Access the full text.
Sign up today, get DeepDyve free for 14 days.
R. Ibragimov, Sh. Sharakhmetov (2002)
ON EXTREMAL PROBLEMS AND BEST CONSTANTS IN MOMENT INEQUALITIES, 64
H. Rosenthal (1970)
On the subspaces ofLp(p>2) spanned by sequences of independent random variablesIsrael Journal of Mathematics, 8
(1981)
Limit theorems on large deviations for sums of infinitedimensional random variables when the cramer’s condition is violated
(1998)
Concentration. In Probabilistic methods for algorithmic discrete mathematics, volume 16 of Algorithms Combin., pages 195–248
Руслан Ибрагимов, R. Ibragimov, Шатургун Шарахметов, Shaturgun Sharahmetov (1997)
О точной константе в неравенстве Розенталя@@@On an exact constant for the Rosenthal inequality, 42
(1974)
Exponential estimates for large deviations
S. Boucheron, O. Bousquet, G. Lugosi, P. Massart (2005)
Moment inequalities for functions of independent random variablesAnnals of Probability, 33
M. Ledoux, K. Oleszkiewicz (2007)
On measure concentration of vector-valued mapsBulletin of The Polish Academy of Sciences Mathematics, 55
J. Kuelbs (1978)
Probability on Banach spaces
C. McDiarmid (1989)
Surveys in Combinatorics, 1989: On the method of bounded differences
I. Pinelis (1994)
OPTIMUM BOUNDS FOR THE DISTRIBUTIONS OF MARTINGALES IN BANACH SPACESAnnals of Probability, 22
M. Ledoux (2001)
The concentration of measure phenomenon
I. Pinelis (2008)
Optimal two-value zero-mean disintegration of zero-mean random variablesElectronic Journal of Probability, 14
M. Habib (1998)
Probabilistic methods for algorithmic discrete mathematics
E. Bolthausen, F. Götze (1993)
The Rate of Convergence for Multivariate Sampling StatisticsAnnals of Statistics, 21
E Bolthausen (1993)
1692Ann. Statist., 21
Louis Chen, Q. Shao (2005)
Stein's method for normal approximation
R. Ibragimov, Sh. Sharakhmetov (1998)
Short Communications: On an Exact Constant for the Rosenthal InequalityTheory of Probability and Its Applications, 42
D. Burkholder (1973)
Distribution Function Inequalities for MartingalesAnnals of Probability, 1
I. Pinelis (2010)
On the von Bahr-Esseen inequalityarXiv: Probability
I. Pinelis (1980)
Estimates of moments of infinite-dimensional martingalesMathematical notes of the Academy of Sciences of the USSR, 27
S Boucheron (2005)
514Ann. Probab., 33
DL Burkholder (1973)
19Ann. Probability, 1
V. Bentkus (2007)
On measure concentration for separately Lipschitz functions in product spacesIsrael Journal of Mathematics, 158
I. Pinelis, A. Sakhanenko (1986)
Remarks on Inequalities for Large Deviation ProbabilitiesTheory of Probability and Its Applications, 30
V Bentkus (2007)
1Israel J. Math., 158
(2011)
Extremal problems in moment inequalities. In Limit theorems of imsart-generic ver
I. Pinelis, Raymond Molzon (2009)
Berry-Esseen bounds for general nonlinear statistics, with applications to Pearson's and non-central Student's and Hotelling'sarXiv: Statistics Theory
I. Pinelis (2005)
On normal domination of (super)martingalesElectronic Journal of Probability, 11
R. Latala, K. Oleszkiewicz (2000)
Between Sobolev and PoincaréLecture Notes in Mathematics
I. Pinelis (2010)
Exact lower bounds on the exponential moments of Winsorized and truncated random variablesarXiv: Probability
R. Latala (1997)
Estimation of moments of sums of independent real random variablesAnnals of Probability, 25
I. Pinelis (2011)
Exact Lower Bounds on the Exponential Moments of Truncated Random VariablesJournal of Applied Probability, 48
[For any nonnegative Borel-measurable function f such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$f(x)\;=\;0$$ \end{document} if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$x\;=\;0$$ \end{document}, the best constant cf in the inequality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$Ef(X\;-\;E\;X)\leqslant c_f E\;f(X)$$ \end{document} for all random variables X with a finite mean is obtained. Properties of the constant cf in the case when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$f\;=\;|\cdot|^p$$ \end{document} for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$p>0$$ \end{document} are studied. Applications to concentration of measure in the form of Rosenthal-type bounds on the moments of separately Lipschitz functions on product spaces are given.]
Published: Apr 1, 2013
Keywords: Probability inequalities; Rosenthal-type inequalities; sums of independent random variables; martingales; concentration of measure; separately Lipschitz functions; product spaces
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.