Access the full text.
Sign up today, get DeepDyve free for 14 days.
J. Komlos, Péter Major, G. Tusnády (1975)
An approximation of partial sums of independent RV'-s, and the sample DF. IZeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 32
N. Nagayama (2004)
Almost sure invariance principle for dynamical systems with stretched exponential mixing ratesHiroshima Mathematical Journal, 34
S. Borgne, F. Pène (2005)
Vitesse dans le théorème limite central pour certains systèmes dynamiques quasi-hyperboliquesBulletin de la Société Mathématique de France, 133
A. Khintchine (1933)
Zu Birkhoffs Lösung des ErgodenproblemsMathematische Annalen, 107
D. Dolgopyat (2003)
Limit theorems for partially hyperbolic systemsTransactions of the American Mathematical Society, 356
I. Melbourne, M. Nicol (2005)
Almost Sure Invariance Principle for Nonuniformly Hyperbolic SystemsCommunications in Mathematical Physics, 260
I. Melbourne, M. Nicol (2006)
A vector-valued almost sure invariance principle for hyperbolic dynamical systemsAnnals of Probability, 37
G. Birkhoff (1931)
Proof of the Ergodic TheoremProceedings of the National Academy of Sciences, 17
M. Rosenblatt (1972)
Central limit theorem for stationary processes
F. Hofbauer, G. Keller (1982)
Ergodic properties of invariant measures for piecewise monotonic transformationsMathematische Zeitschrift, 180
St'ephane Borgne (1999)
Limit theorems for non-hyperbolic automorphisms of the torusIsrael Journal of Mathematics, 109
W. Wu (2007)
STRONG INVARIANCE PRINCIPLES FOR DEPENDENT RANDOM VARIABLESAnnals of Probability, 35
J. Komlos, P. Major, G. Tusnády (1975)
An approximation of partial sums of independent RV's, and the sample DF. IIZeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 34
J. Dedecker, E. Rio (2000)
On the functional central limit theorem for stationary processesAnnales De L Institut Henri Poincare-probabilites Et Statistiques, 36
(1960)
Central limit theorem for ergofic endomorphisms of compact commutative groups, Dokl
Q. Shao (1993)
Almost sure invariance principles for mixing sequences of random variablesStochastic Processes and their Applications, 48
P. Major (1976)
The approximation of partial sums of independent RV'sZeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 35
D. Lind (1982)
Dynamical properties of quasihyperbolic toral automorphismsErgodic Theory and Dynamical Systems, 2
J. Dedecker, S. Gouezel, F. Merlevède (2011)
The almost sure invariance principle for unbounded functions of expanding mapsarXiv: Probability
M. Denker, W. Philipp (1984)
Approximation by Brownian motion for Gibbs measures and flows under a functionErgodic Theory and Dynamical Systems, 4
S. Gouëzel (2010)
ALMOST SURE INVARIANCE PRINCIPLE FOR DYNAMICAL SYSTEMS BY SPECTRAL METHODSAnnals of Probability, 38
F. Merlevède, M. Peligrad (2011)
Rosenthal-type inequalities for the maximum of partial sums of stationary processes and examplesAnnals of Probability, 41
W. Philipp, W. Stout (1975)
Almost sure invariance principles for partial sums of weakly dependent random variablesMemoirs of the American Mathematical Society, 2
J. Dedecker, P. Doukhan, F. Merlevède (2011)
Rates of convergence in the strong invariance principle under projective criteriaElectronic Journal of Probability, 17
F. Merlevède, E. Rio (2011)
Strong approximation of partial sums under dependence conditions with application to dynamical systemsStochastic Processes and their Applications, 122
M. Field, I. Melbourne, Andrew Török (2003)
Decay of correlations, central limit theorems and approximation by Brownian motion for compact Lie group extensionsErgodic Theory and Dynamical Systems, 23
(2012)
Rosenthal inequalities for martingales and stationary sequences and examples, to appear in Ann
I. Melbourne, A. Török (2002)
Central Limit Theorems and Invariance Principles¶for Time-One Maps of Hyperbolic FlowsCommunications in Mathematical Physics, 229
P. Hall, E. Lukács, Z. Birnbaum, C. Heyde (1980)
Martingale Limit Theory and Its Application
[In this paper, we give rates of convergence in the strong invariance principle for non-adapted sequences satisfying projective criteria. The results apply to the iterates of ergodic automorphisms T of the d-dimensional torus \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{T}^d$$ \end{document}, even in the non hyperbolic case. In this context, we give a large class of unbounded function f from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{T}^d$$ \end{document} to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{R}$$ \end{document}, for which the partial sum \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$f\;\circ\;T\;+\;f\;\circ\;T^{2}\;+\;.\;.\;.\;+\;f\;\circ\;T^{n}$$ \end{document} satisfies a strong invariance principle with an explicit rate of convergence.]
Published: Apr 1, 2013
Keywords: Almost sure invariance principle; strong approximations; nonadapted sequences; ergodic automorphisms of the torus
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.