Access the full text.
Sign up today, get DeepDyve free for 14 days.
A. Naor, D. Romik (2003)
Projecting the surface measure of the sphere of ℓpnAnnales De L Institut Henri Poincare-probabilites Et Statistiques, 39
S. Artstein-Avidan, A. Giannopoulos, V. Milman (2015)
Asymptotic Geometric Analysis, Part I, 202
M. Anttila, K. Ball, I. Perissinaki (2003)
The central limit problem for convex bodiesTransactions of the American Mathematical Society, 355
N. Gantert, S. Kim, K. Ramanan (2015)
Large deviations for random projections of $\ell^p$ ballsarXiv: Probability
Silouanos Brazitikos (2014)
Geometry of Isotropic Convex Bodies
M. Schmuckenschläger (1998)
Volume of intersections and sections of the unit ball of ℓⁿ_, 126
D. Voiculescu (1993)
The analogues of entropy and of Fisher's information measure in free probability theory, ICommunications in Mathematical Physics, 155
F. Barthe, O. Guédon, S. Mendelson, A. Naor (2005)
A probabilistic approach to the geometry of the ℓᵨⁿ-ballAnnals of Probability, 33
G. Schechtman, J. Zinn (1989)
On the Volume of the Intersection of Two L n p Balls, 110
S. Rachev, L. Rüschendorf (1991)
Approximate Independence of Distributions on Spheres and Their Stability PropertiesAnnals of Probability, 19
G. Schechtman, M. Schmuckenschläger (1991)
Another remark on the volume of the intersection of two L p n balls
M. Schmuckenschläger (2001)
CLT and the Volume of Intersections of ℓpn-BallsGeometriae Dedicata, 85
Z. Kabluchko, J. Prochno, C. Thaele (2017)
High-dimensional limit theorems for random vectors in $\ell_p^n$-ballsarXiv: Probability
A. Naor, A. Naor (2006)
The surface measure and cone measure on the sphere of $\ell_p^n$Transactions of the American Mathematical Society, 359
[In this article we first review some by-now classical results about the geometry of ℓp-balls 𝔹pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb {B}_p^n$$ \end{document} in ℝn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb {R}^n$$ \end{document} and provide modern probabilistic arguments for them. We also present some more recent developments including a central limit theorem and a large deviations principle for the q-norm of a random point in 𝔹pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb {B}_p^n$$ \end{document}. We discuss their relation to the classical results and give hints to various extensions that are available in the existing literature.]
Published: Nov 27, 2019
Keywords: Asymptotic geometric analysis; ℓpn-Balls\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\ell _p^n\text{-Balls}$$ \end{document}; Central limit theorem; Law of large numbers; Large deviations; Polar integration formula; 46B06; 47B10; 60B20; 60F10
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.