Get 20M+ Full-Text Papers For Less Than $1.50/day. Subscribe now for You or Your Team.

Learn More →

High-resolution facies and porosity models of the upper Jurassic Arab-D carbonate reservoir using an outcrop analogue, central Saudi Arabia

High-resolution facies and porosity models of the upper Jurassic Arab-D carbonate reservoir using... Subsurface models of hydrocarbon reservoirs are coarse and of low resolution when compared with the actual geologic characteristics. Therefore, the understanding of the three-dimensional architecture of reservoir units is often incomplete. Outcrop analogues are commonly used to understand the spatial continuity of reservoir units. In this study, a Late Jurassic outcrop analogue for the Arab-D reservoir of central Saudi Arabia was used to build a high-resolution model that captures fine geologic details. Subsurface reservoir lithofacies were matched with those from the studied outcrop, and porosity values derived from published core and well log data from the Ain Dar, Uthmanyah, and Shudgum areas of the Ghawar Field, eastern Saudi Arabia, were then applied to the equivalent lithofacies in the outcrop. Maximum, minimum, and average subsurface porosity for each lithofacies were distributed in the facies model using a geostatistical algorithm to produce nine porosity models for the field data. Several realisations were run to visualise the variability in each model and to quantitatively measure the uncertainty associated with the models. The results indicated that potential reservoir zones were associated with grainstone, packstone, and some wackestone layers. Semivariogram analysis of the lithofacies showed good continuity in the N-S direction and less continuity in the E-W direction. The high-resolution lithofacies models detected permeability barriers and isolated low porosity bodies within the potential reservoir zones. This model revealed the porosity distribution in areas smaller than one cell in the subsurface model and highlighted the uncertainty associated with several aspects of the model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Arabian Journal of Geosciences Springer Journals

High-resolution facies and porosity models of the upper Jurassic Arab-D carbonate reservoir using an outcrop analogue, central Saudi Arabia

Loading next page...
 
/lp/springer-journals/high-resolution-facies-and-porosity-models-of-the-upper-jurassic-arab-PMERP7W5Fa

References (28)

Publisher
Springer Journals
Copyright
Copyright © 2012 by Saudi Society for Geosciences
Subject
Earth Sciences; Earth Sciences, general
ISSN
1866-7511
eISSN
1866-7538
DOI
10.1007/s12517-012-0708-1
Publisher site
See Article on Publisher Site

Abstract

Subsurface models of hydrocarbon reservoirs are coarse and of low resolution when compared with the actual geologic characteristics. Therefore, the understanding of the three-dimensional architecture of reservoir units is often incomplete. Outcrop analogues are commonly used to understand the spatial continuity of reservoir units. In this study, a Late Jurassic outcrop analogue for the Arab-D reservoir of central Saudi Arabia was used to build a high-resolution model that captures fine geologic details. Subsurface reservoir lithofacies were matched with those from the studied outcrop, and porosity values derived from published core and well log data from the Ain Dar, Uthmanyah, and Shudgum areas of the Ghawar Field, eastern Saudi Arabia, were then applied to the equivalent lithofacies in the outcrop. Maximum, minimum, and average subsurface porosity for each lithofacies were distributed in the facies model using a geostatistical algorithm to produce nine porosity models for the field data. Several realisations were run to visualise the variability in each model and to quantitatively measure the uncertainty associated with the models. The results indicated that potential reservoir zones were associated with grainstone, packstone, and some wackestone layers. Semivariogram analysis of the lithofacies showed good continuity in the N-S direction and less continuity in the E-W direction. The high-resolution lithofacies models detected permeability barriers and isolated low porosity bodies within the potential reservoir zones. This model revealed the porosity distribution in areas smaller than one cell in the subsurface model and highlighted the uncertainty associated with several aspects of the model.

Journal

Arabian Journal of GeosciencesSpringer Journals

Published: Oct 23, 2012

There are no references for this article.