Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Impact of climate change on potential habitat distribution of Sciaenidae in the coastal waters of China

Impact of climate change on potential habitat distribution of Sciaenidae in the coastal waters of... Climate change has affected and will continue to affect the spatial distribution patterns of marine organisms. To understand the impact of climate change on the distribution patterns and species richness of the Sciaenidae in China’s coastal waters, the maximum entropy model was used to combine six environmental factors and predict the potential distribution of 12 major species of Sciaenidae by 2050s under Representative Concentration Pathways (RCPs) 2.6 and 8.5. The results showed that the average area under the receiver operating characteristic curve of the model was 0.917, indicating that the model predictions were accurate and reliable. The main driving factors affecting the potential distribution of these fishes were dissolved oxygen, salinity, and sea surface temperature (SST). There was an overall northward shift in the potential habitat areas of these fishes under the two climate scenarios. The total potential habitat areas of Larimichthys polyactis, Pennahia argentata, and Pennahia pawak decreased under both climate scenarios, while the total habitat area of Johnius belengerii, Pennahia anea, Miichthys miiuy, Collichthys lucidus, and Collichthys niveatus increased, suggesting that these might be loser and winner species, respectively. The expansion rate, contraction rate, degree of centroid change, and species richness in the potential habitats were generally more significant under RCP8.5 than RCP2.6. The mean shift rates of the potential distribution were 41.50 km/(10 a) and 29.20 km/(10 a) under RCP8.5 and RCP2.6, respectively. The changes in Sciaenidae species richness under climate change were bounded by the Changjiang River Estuary waters, with obvious north-south differences. Some waters with increased species richness may become refuges for Sciaenidae fishes under climate change. The richness and habitat area change rate of some aquatic germplasm resources will decrease, meanings that these reserves are more sensitive to climate change, and more attention should be paid to the potential challenges and opportunities for fishery managers. This study may provide a scientific basis for the management and conservation of Sciaenidae in China under climate change. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acta Oceanologica Sinica Springer Journals

Impact of climate change on potential habitat distribution of Sciaenidae in the coastal waters of China

Loading next page...
 
/lp/springer-journals/impact-of-climate-change-on-potential-habitat-distribution-of-yLDD4PnpAL

References (99)

Publisher
Springer Journals
Copyright
Copyright © Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2023
ISSN
0253-505X
eISSN
1869-1099
DOI
10.1007/s13131-022-2053-x
Publisher site
See Article on Publisher Site

Abstract

Climate change has affected and will continue to affect the spatial distribution patterns of marine organisms. To understand the impact of climate change on the distribution patterns and species richness of the Sciaenidae in China’s coastal waters, the maximum entropy model was used to combine six environmental factors and predict the potential distribution of 12 major species of Sciaenidae by 2050s under Representative Concentration Pathways (RCPs) 2.6 and 8.5. The results showed that the average area under the receiver operating characteristic curve of the model was 0.917, indicating that the model predictions were accurate and reliable. The main driving factors affecting the potential distribution of these fishes were dissolved oxygen, salinity, and sea surface temperature (SST). There was an overall northward shift in the potential habitat areas of these fishes under the two climate scenarios. The total potential habitat areas of Larimichthys polyactis, Pennahia argentata, and Pennahia pawak decreased under both climate scenarios, while the total habitat area of Johnius belengerii, Pennahia anea, Miichthys miiuy, Collichthys lucidus, and Collichthys niveatus increased, suggesting that these might be loser and winner species, respectively. The expansion rate, contraction rate, degree of centroid change, and species richness in the potential habitats were generally more significant under RCP8.5 than RCP2.6. The mean shift rates of the potential distribution were 41.50 km/(10 a) and 29.20 km/(10 a) under RCP8.5 and RCP2.6, respectively. The changes in Sciaenidae species richness under climate change were bounded by the Changjiang River Estuary waters, with obvious north-south differences. Some waters with increased species richness may become refuges for Sciaenidae fishes under climate change. The richness and habitat area change rate of some aquatic germplasm resources will decrease, meanings that these reserves are more sensitive to climate change, and more attention should be paid to the potential challenges and opportunities for fishery managers. This study may provide a scientific basis for the management and conservation of Sciaenidae in China under climate change.

Journal

Acta Oceanologica SinicaSpringer Journals

Published: Apr 1, 2023

Keywords: climate change; Sciaenidae; potential distribution; species richness; habitat

There are no references for this article.