Access the full text.
Sign up today, get DeepDyve free for 14 days.
Erich Baur, J. Bertoin (2016)
Elephant random walks and their connection to Pólya-type urns.Physical review. E, 94 5-1
J. Jacod, A. Shiryaev (1987)
Limit Theorems for Stochastic Processes
A. Gut, U. Stadtmuller (2019)
Elephant random walks with delays.arXiv: Probability
J. Bertoin (2018)
Noise reinforcement for Lévy processesAnnales de l'Institut Henri Poincaré, Probabilités et Statistiques
of Grundlehren der Mathematischen Wissenschaften
B. Bercu (2017)
A martingale approach for the elephant random walkJournal of Physics A: Mathematical and Theoretical, 51
S. Janson (2004)
Functional limit theorems for multitype branching processes and generalized Pólya urnsStochastic Processes and their Applications, 110
R. Gouet (1993)
Martingale Functional Central Limit Theorems for a Generalized Polya UrnAnnals of Probability, 21
Daniel Kious, V. Sidoravicius (2016)
Phase transition for the Once-reinforced random walk on $\mathbb{Z}^{d}$-like treesThe Annals of Probability
Daniel Kious, V. Sidoravicius (2017)
Submitted to the Annals of Probability PHASE TRANSITION FOR THE ONCE-REINFORCED RANDOM WALK ON Z D-LIKE TREES
O. Kallenberg (2021)
Foundations of Modern ProbabilityProbability Theory and Stochastic Modelling
Naoki Kubota, Masato Takei (2019)
Gaussian Fluctuation for Superdiffusive Elephant Random WalksJournal of Statistical Physics, 177
Manuel Gonz'alez-Navarrete, R. Lambert (2016)
Non-Markovian random walks with memory lapsesJournal of Mathematical Physics
S. Businger (2017)
The Shark Random SwimJournal of Statistical Physics, 172
Cristian Coletti, R. Gava, G. Schutz (2016)
Central limit theorem and related results for the elephant random walkJournal of Mathematical Physics, 58
G. Schütz, S. Trimper (2004)
Elephants can always remember: exact long-range memory effects in a non-Markovian random walk.Physical review. E, Statistical, nonlinear, and soft matter physics, 70 4 Pt 2
R. Kürsten (2016)
Random recursive trees and the elephant random walk.Physical review. E, 93 3
Robin Pemantle (2006)
A survey of random processes with reinforcementProbability Surveys, 4
W. Whitt (2007)
Proofs of the martingale FCLTProbability Surveys, 4
Cristian Coletti, I. Papageorgiou (2019)
Asymptotic analysis of the elephant random walkJournal of Statistical Mechanics: Theory and Experiment, 2021
Cristian Coletti, R. Gava, G. Schütz (2017)
A strong invariance principle for the elephant random walkJournal of Statistical Mechanics: Theory and Experiment, 2017
Daniel Revuz, M. Yor (1990)
Continuous martingales and Brownian motion
B. Bercu, Lucile Laulin (2017)
On the Multi-dimensional Elephant Random WalkJournal of Statistical Physics, 175
Erich Baur (2019)
On a Class of Random Walks with Reinforced MemoryJournal of Statistical Physics
[A noise reinforced Brownian motion is a centered Gaussian process B̂=(B̂(t))t≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\hat B=(\hat B(t))_{t\geq 0}$$ \end{document} with covariance 𝔼(B̂(t)B̂(s))=(1−2p)−1tps1−pfor0≤s≤t,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\displaystyle \mathbb {E}(\hat B(t)\hat B(s))=(1-2p)^{-1}t^ps^{1-p} \quad \text{for} \quad 0\leq s \leq t, $$ \end{document} where p ∈ (0, 1∕2) is a reinforcement parameter. Our main purpose is to establish a version of Donsker’s invariance principle for a large family of step-reinforced random walks in the diffusive regime, and more specifically, to show that B̂\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\hat B$$ \end{document} arises as the universal scaling limit of the former. This extends known results on the asymptotic behavior of the so-called elephant random walk.]
Published: Nov 4, 2020
Keywords: Reinforcement; Brownian motion; Invariance principle; Elephant random walk; 60G50; 60G51; 60K35
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.