Get 20M+ Full-Text Papers For Less Than $1.50/day. Subscribe now for You or Your Team.

Learn More →

In and Out of Equilibrium 3: Celebrating Vladas SidoraviciusLimit Theorems for Loop Soup Random Variables

In and Out of Equilibrium 3: Celebrating Vladas Sidoravicius: Limit Theorems for Loop Soup Random... [This article deals with limit theorems for certain loop variables for loop soups whose intensity approaches infinity. We first consider random walk loop soups on finite graphs and obtain a central limit theorem when the loop variable is the sum over all loops of the integral of each loop against a given one-form on the graph. An extension of this result to the noncommutative case of loop holonomies is also discussed. As an application of the first result, we derive a central limit theorem for windings of loops around the faces of a planar graph. More precisely, we show that the winding field generated by a random walk loop soup, when appropriately normalized, has a Gaussian limit as the loop soup intensity tends to ∞, and we give an explicit formula for the covariance kernel of the limiting field. We also derive a Spitzer-type law for windings of the Brownian loop soup, i.e., we show that the total winding around a point of all loops of diameter larger than δ, when multiplied by 1∕logδ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$1/\log \delta $$ \end{document}, converges in distribution to a Cauchy random variable as δ → 0. The random variables analyzed in this work have various interpretations, which we highlight throughout the paper.] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png

In and Out of Equilibrium 3: Celebrating Vladas SidoraviciusLimit Theorems for Loop Soup Random Variables

Part of the Progress in Probability Book Series (volume 77)
Editors: Vares, Maria Eulália; Fernández, Roberto; Fontes, Luiz Renato; Newman, Charles M.

Loading next page...
 
/lp/springer-journals/in-and-out-of-equilibrium-3-celebrating-vladas-sidoravicius-limit-8LpqOOS7PN

References (21)

Publisher
Springer International Publishing
Copyright
© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
ISBN
978-3-030-60753-1
Pages
219 –237
DOI
10.1007/978-3-030-60754-8_11
Publisher site
See Chapter on Publisher Site

Abstract

[This article deals with limit theorems for certain loop variables for loop soups whose intensity approaches infinity. We first consider random walk loop soups on finite graphs and obtain a central limit theorem when the loop variable is the sum over all loops of the integral of each loop against a given one-form on the graph. An extension of this result to the noncommutative case of loop holonomies is also discussed. As an application of the first result, we derive a central limit theorem for windings of loops around the faces of a planar graph. More precisely, we show that the winding field generated by a random walk loop soup, when appropriately normalized, has a Gaussian limit as the loop soup intensity tends to ∞, and we give an explicit formula for the covariance kernel of the limiting field. We also derive a Spitzer-type law for windings of the Brownian loop soup, i.e., we show that the total winding around a point of all loops of diameter larger than δ, when multiplied by 1∕logδ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$1/\log \delta $$ \end{document}, converges in distribution to a Cauchy random variable as δ → 0. The random variables analyzed in this work have various interpretations, which we highlight throughout the paper.]

Published: Nov 4, 2020

Keywords: Loop soups; Limit theorems; Winding number; Winding field; Spitzer’s law; Loop holonomies

There are no references for this article.