Access the full text.
Sign up today, get DeepDyve free for 14 days.
K. Schneider, A. Escalante (2013)
Fitness components and natural selection: why are there different patterns on the emergence of drug resistance in Plasmodium falciparum and Plasmodium vivax?Malaria Journal, 12
Claudio Schneider, M. Feller, D. Bauer, T. Collet, B. Costa, R. Auer, R. Peeters, S. Brown, A. Bremner, P. O'Leary, P. Feddema, P. Leedman, D. Aujesky, J. Walsh, N. Rodondi (2018)
Initial evaluation of thyroid dysfunction - Are simultaneous TSH and fT4 tests necessary?PLoS ONE, 13
H. Antony, S. Parija (2016)
Antimalarial drug resistance: An overviewTropical Parasitology, 6
R. Ross (2009)
Report on the Prevention of Malaria in Mauritius
H. Babiker, G. Satti, H. Ferguson, R. Bayoumi, D. Walliker (2005)
Drug resistant Plasmodium falciparum in an area of seasonal transmission.Acta tropica, 94 3
F. McKenzie, Geoffrey Jeffery, William Collins (2007)
GAMETOCYTEMIA AND FEVER IN HUMAN MALARIA INFECTIONS, 93
W. Hill, H. Babiker (1995)
Estimation of numbers of malaria clones in blood samplesProceedings of the Royal Society of London. Series B: Biological Sciences, 262
C. Plowe, James Kublin, Ogobara Doumbo (1998)
P. falciparum dihydrofolate reductase and dihydropteroate synthase mutations: epidemiology and role in clinical resistance to antifolates.Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy, 1 6
K. Schneider, A. Escalante (2018)
Correction: A Likelihood Approach to Estimate the Number of Co-InfectionsPLoS ONE, 13
M. Imwong, K. Suwannasin, Chanon Kunasol, Kreepol Sutawong, M. Mayxay, Huy Rekol, F. Smithuis, T. Hlaing, K. Tun, Rob Pluijm, R. Tripura, Olivo Miotto, D. Ménard, M. Dhorda, N. Day, N. White, A. Dondorp (2017)
The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion: a molecular epidemiology observational studyThe Lancet. Infectious Diseases, 17
A. Abdel-Muhsin, M. Mackinnon, Eltayeb Ali, Elkhansaa Nassir, S. Suleiman, S. Ahmed, D. Walliker, H. Babiker (2004)
Evolution of drug-resistance genes in Plasmodium falciparum in an area of seasonal malaria transmission in Eastern Sudan.The Journal of infectious diseases, 189 7
L. Han, M. Hudgens, M. Emch, J. Juliano, Corinna Keeler, F. Martinson, P. Kamthunzi, G. Tegha, M. Lievens, I. Hoffman (2017)
RTS,S/AS01 Malaria Vaccine Efficacy is Not Modified by Seasonal Precipitation: Results from a Phase 3 Randomized Controlled Trial in MalawiScientific Reports, 7
A. McCollum, Kristen Mueller, L. Villegas, V. Udhayakumar, A. Escalante (2007)
Common Origin and Fixation of Plasmodium falciparum dhfr and dhps Mutations Associated with Sulfadoxine-Pyrimethamine Resistance in a Low-Transmission Area in South AmericaAntimicrobial Agents and Chemotherapy, 51
A. Gregson, C. Plowe (2005)
Mechanisms of Resistance of Malaria Parasites to AntifolatesPharmacological Reviews, 57
J. Popovici, Lindsey Pierce-Friedrich, Saorin Kim, Sophalai Bin, Vorleak Run, Dysoley Lek, K. Hee, Lawrence Soon-U, M. Cannon, D. Serre, D. Ménard (2018)
Recrudescence, Reinfection, or Relapse? A More Rigorous Framework to Assess Chloroquine Efficacy for Plasmodium vivax MalariaThe Journal of Infectious Diseases, 219
W. Collins (1974)
Primate malarias.Advances in veterinary science and comparative medicine, 18 0
C. Darwin (2019)
On the origin of species by means of natural selection: Or the preservation of the favoured races in the struggle for life.
Khadijetou Lekweiry, A. Boukhary, T. Gaillard, N. Wurtz, H. Bogreau, J. Hafid, J. Trape, H. Bouchiba, M. Salem, B. Pradines, C. Rogier, L. Basco, S. Briolant (2012)
Molecular surveillance of drug-resistant Plasmodium vivax using pvdhfr, pvdhps and pvmdr1 markers in Nouakchott, Mauritania.The Journal of antimicrobial chemotherapy, 67 2
Shalini Nair, Jeff Williams, A. Brockman, Lucy Paiphun, M. Mayxay, P. Newton, J. Guthmann, F. Smithuis, T. Hien, N. White, F. Nosten, T. Anderson (2003)
A selective sweep driven by pyrimethamine treatment in southeast asian malaria parasites.Molecular biology and evolution, 20 9
M. Zaw, N. Emran, Zaw Lin (2017)
Updates on k13 mutant alleles for artemisinin resistance in Plasmodium falciparum.Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi, 51 2
A. McCollum, K. Schneider, S. Griffing, Zhiyong Zhou, S. Kariuki, Feiko Ter-Kuile, Y. Shi, L. Slutsker, A. Lal, V. Udhayakumar, A. Escalante (2012)
Differences in selective pressure on dhps and dhfr drug resistant mutations in western KenyaMalaria Journal, 11
P. Vathsala, Avijit Pramanik, S. Dhanasekaran, C. Devi, C. Pillai, S. Subbarao, Susanta Ghosh, S. Tiwari, T. Sathyanarayan, P. Deshpande, G. Mishra, M. Ranjit, Aditya Dash, P. Rangarajan, Govindarajan Padmanaban (2004)
Widespread occurrence of the Plasmodium falciparum chloroquine resistance transporter (Pfcrt) gene haplotype SVMNT in P. falciparum malaria in India.The American journal of tropical medicine and hygiene, 70 3
Carolin Geiger, Guillaume Compaoré, B. Coulibaly, A. Sié, M. Dittmer, Cecilia Sanchez, M. Lanzer, T. Jänisch (2014)
Substantial increase in mutations in the genes pfdhfr and pfdhps puts sulphadoxine–pyrimethamine‐based intermittent preventive treatment for malaria at risk in Burkina FasoTropical Medicine & International Health, 19
Kritpaphat Tantiamornkul, Tepanata Pumpaibool, J. Piriyapongsa, R. Culleton, Usa Lek-Uthai (2018)
The prevalence of molecular markers of drug resistance in Plasmodium vivax from the border regions of Thailand in 2008 and 2014International Journal for Parasitology: Drugs and Drug Resistance, 8
K. Schneider, Yuseob Kim (2010)
An analytical model for genetic hitchhiking in the evolution of antimalarial drug resistance.Theoretical population biology, 78 2
T. Triglia, Ping Wang, P. Sims, J. Hyde, A. Cowman (1998)
Allelic exchange at the endogenous genomic locus in Plasmodium falciparum proves the role of dihydropteroate synthase in sulfadoxine‐resistant malariaThe EMBO Journal, 17
K. Schneider, A. Escalante (2014)
A Likelihood Approach to Estimate the Number of Co-InfectionsPLoS ONE, 9
T. Wellems, C. Plowe (2001)
Chloroquine-resistant malaria.The Journal of infectious diseases, 184 6
K. Schneider (2018)
Large and finite sample properties of a maximum-likelihood estimator for multiplicity of infectionPLoS ONE, 13
A. Sidhu, D. Verdier-Pinard, D. Fidock (2002)
Chloroquine Resistance in Plasmodium falciparum Malaria Parasites Conferred by pfcrt MutationsScience, 298
J. Haigh (1974)
The hitch-hiking effect of a favourable gene.Genetical research, 23 1
K. Schneider, Yuseob Kim (2011)
Approximations for the hitchhiking effect caused by the evolution of antimalarial-drug resistanceJournal of Mathematical Biology, 62
A. McCollum, L. Basco, R. Tahar, V. Udhayakumar, A. Escalante (2008)
Hitchhiking and Selective Sweeps of Plasmodium falciparum Sulfadoxine and Pyrimethamine Resistance Alleles in a Population from Central AfricaAntimicrobial Agents and Chemotherapy, 52
J. Cortese, C. Plowe (1998)
Antifolate resistance due to new and known Plasmodium falciparum dihydrofolate reductase mutations expressed in yeast.Molecular and biochemical parasitology, 94 2
R. Howes, K. Battle, K. Mendis, David Smith, R. Cibulskis, J. Baird, S. Hay (2016)
Global Epidemiology of Plasmodium vivaxThe American Journal of Tropical Medicine and Hygiene, 95
Richard Price, Richard Price, L. Seidlein, N. Valecha, F. Nosten, J. Baird, N. White (2014)
Global extent of chloroquine-resistant Plasmodium vivax: a systematic review and meta-analysisThe Lancet. Infectious Diseases, 14
[Malaria is a resilient disease characterized by complex life histories of the pathogen and the vector, and still is a major threat to global development. We introduce a population-genetic framework for the evolutionary processes, exemplified but not restricted to anti-malarial drug resistance, which accurately incorporates malaria transmission. In particular, the dynamics of resistance-conferring mutations and their impact on neutral genetic variation (genetic hitchhiking) are modeled. It is shown that the processes of selection and recombination cannot be separated as in standard population-genetic models. Indeed the interplay of selection and recombination is mediated by multiplicity of infection (MOI), i.e., the number of (super-) infections within the course of the disease. Importantly, the extent of genetic hitchhiking (or, equivalently, linkage disequilibria) around resistance-conferring alleles crucially depends on MOI. The advantage of the framework is that vector dynamics and intra-host dynamics do not need to be modeled explicitly. Vector dynamics enter the model via MOI, while intra-host dynamics are subsumed by fitness parameters. Complementary models can be incorporated to elucidate the mechanisms underlying these parameters. In particular, it is shown how MOI and selection parameters can be estimated from molecular data. Furthermore, we discuss how the parasite’s life history inside the host translates to evolutionary fitness. These considerations explain why anti-malarial drug-resistance evolution is faster in P. falciparum than in P. vivax.]
Published: Aug 6, 2020
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.