Access the full text.
Sign up today, get DeepDyve free for 14 days.
B. Russell (1973)
Essays in analysis
W. Killing (1896)
Ueber transfinite ZahlenMathematische Annalen, 48
W. Ewald (1996)
From Kant to Hilbert
Carlo Cellucci, E. Grosholz, E. Ippoliti, G. Sundholm (2011)
Logic and Knowledge
Herbert Meschkowski (1967)
Probleme des Unendlichen ; Werk und Leben Georg Cantors
Hao Wang (1954)
The formalization of mathematicsJournal of Symbolic Logic, 19
Bengt Nordström, Kent Petersson, Jan Smith (1990)
Programming in Martin-Lo¨f's type theory: an introduction
H. Weyl, P. Schilpp (1945)
The Philosophy of Bertrand Russell.American Mathematical Monthly, 53
Hao Wang (1963)
A survey of mathematical logic
J. Neumann, A. Taub (1961)
John von Neumann collected works
K. Gödel (1984)
Philosophy of mathematics: Russell's mathematical logic
J. Bell, M. Machover (1977)
A course in mathematical logic
B. Russell (1908)
Mathematical Logic as Based on the Theory of TypesAmerican Journal of Mathematics, 30
Alexander George (1987)
The Imprecision of ImpredicativityMind
E. Zermelo (1908)
Untersuchungen über die Grundlagen der Mengenlehre. IMathematische Annalen, 65
G. Heinzmann (1986)
Poincaré, Russell, Zermelo et Peano
W. Aspray, P. Kitcher (1988)
History and Philosophy of Modern Mathematics
H. Poincaré (1906)
Science and Hypothesis
Janet Folina, C. Savage, C. Anderson (1989)
Rereading Russell: Essays on Bertrand Russell’s Metaphysics and Epistemology
F. Ramsey (1932)
The foundations of mathematics
Ladislav Rieger (1963)
On the consistency of the generalized continuum hypothesis
J. Neumann
Über eine Widerspruchfreiheitsfrage in der axiomatischen Mengenlehre.Crelle's Journal, 160
E. Zermelo (1907)
Neuer Beweis für die Möglichkeit einer WohlordnungMathematische Annalen, 65
A. Kanamori (2008)
Cohen and Set TheoryBulletin of Symbolic Logic, 14
E. Zermelo, H. Ebbinghaus, A. Kanamori (2010)
Set theory, miscellanea
P. Cohen (2005)
Skolem and pessimism about proof in mathematicsPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 363
H. Poincaré (1934)
Science et méthode, 3
C. Louttit (2010)
Walter Scott Publishing Company
P. Benacerraf, C. Wright (1985)
Skolem and the SkepticAristotelian Society Supplementary Volume, 59
H. Hahn, O. Taussky (1932)
Moderne AlgebraMonatshefte für Mathematik und Physik, 39
P. Benacerraf, H. Putnam (1984)
Philosophy of mathematics : selected readings
K. Kunen (1983)
Set theory - an introduction to independence proofs, 102
J. Neumann (1928)
Die Axiomatisierung der MengenlehreMathematische Zeitschrift, 27
F. Ramsey, D. Mellor (1978)
Foundations: Essays in philosophy, logic, mathematics and economics
H. Poincaré, G. Halsted, J. Royce (2014)
The Foundations of Science: Astronomy
Michael Hallett (1984)
Cantorian set theory and limitation of size
W. Sheldon, H. Poincaré, M. Whitehead, Bertrand Russell (1906)
Les Mathematiques et la Logique., 3
G. Heinzmann, H. Poincaré, Bertrand Russell, E. Zermelo, G. Peano (1986)
Poincaré, Russell, Zermelo et Peano : textes de la discussion (1906-1912) sur les fondements des mathématiques : des antinomies à la prédicativité
Alexander George (1985)
Skolem and the löwenheim-skolem theorem: a case study of the philosophical significance of mathematical resultsHistory and Philosophy of Logic, 6
K. Gödel (1940)
Consistency of the Continuum Hypothesis. (AM-3)
F. Ramsey (2001)
The Foundations of Mathematics and Other Logical Essays
M. Crosland (1970)
Foundations of ScienceNature, 228
A. Fraenkel (1925)
Untersuchungen über die Grundlagen der MengenlehreMathematische Zeitschrift, 22
H. Poincaré (1968)
La science et l'hypothèse
W. Goldfarb (1989)
Russell's reasons for ramification
K. Gödel (1938)
The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis.Proceedings of the National Academy of Sciences of the United States of America, 24 12
W. Goldfarb (1988)
Poincaré against the logicists
H. Poincaré (1905)
La valeur de la science, 2
J. Heijenoort (1967)
From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931
[When seen in the “correct” light, the contradictions of set theory are by no means disastrous, but instructive and fruitful. For instance, the antinomies of Russell and Burali-Forti live on in the systems of axiomatised set theory in the guise of established theorems. Zermelo used the Russell-Zermelo argument to prove that every set possesses a subset which cannot be an element of that set, and from which it follows that there can be no universal set ((Zermelo, 1908b, pp. 264–265), p. 203 of the English translation), and the essentials of the Burali-Forti argument can be used to prove that there is no ordinary set of all (von Neumann) ordinals.]
Published: Jan 27, 2011
Keywords: English Translation; Continuum Hypothesis; Transitive Model; Propositional Connective; Uncountable Cardinal
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.