Access the full text.
Sign up today, get DeepDyve free for 14 days.
B. Russell (1973)
Essays in analysis
H. Ebbinghaus, J. Flum, W. Thomas (1985)
Mathematical logic
Adam Rieger (2000)
An argument for Finsler-Aczel set theoryMind, 109
Carlo Cellucci, E. Grosholz, E. Ippoliti, Göran Sundholm (2011)
Logic and Knowledge
H. Weyl, P. Schilpp (1945)
The Philosophy of Bertrand Russell.American Mathematical Monthly, 53
S. Srivastava (2008)
A Course on Mathematical Logic
C. Wright (1995)
FREGE: PHILOSOPHY OF MATHEMATICSPhilosophical Books, 36
E. Zermelo (1904)
Beweis, daß jede Menge wohlgeordnet werden kannMathematische Annalen, 59
J. Neumann
Eine Axiomatisierung der Mengenlehre.Journal für die reine und angewandte Mathematik (Crelles Journal), 1925
G. Frege, T. Müller, Bernhard Schröder, Rainer Stuhlmann-Laeisz (2009)
Grundgesetze der Arithmetik : begriffsschriftlich abgeleitet
K. Gödel (1984)
Philosophy of mathematics: Russell's mathematical logic
J. Bell, M. Machover (1977)
A course in mathematical logic
D. Mirimanoff
Les antinomies de Russell et de Burali-Forti et le problème fondamental de la théorie des ensembles, 19
B. Russell (1908)
Mathematical Logic as Based on the Theory of TypesAmerican Journal of Mathematics, 30
E. Zermelo (1908)
Untersuchungen über die Grundlagen der Mengenlehre. IMathematische Annalen, 65
(1902)
Letter to Frege
H. Brown, B. Russell (1906)
On Some Difficulties in the Theory of Transfinite Numbers and Order Types., 3
J. Ferreirós (2004)
From Frege to Gödel. A Source Book in Mathematical Logic, 1879¿1931: By Jean van Heijenoort. Cambridge, MA (Harvard University Press). 1967; new paperback edn., 2002. 664 pages, 1 halftone. ISBN: 0-674-32449-8. $27.95Historia Mathematica, 31
Xavier Léon
Bevue de Metaphysique et de MoraleKant-Studien, 5
B. Russell
On Some Difficulties in the Theory of Transfinite Numbers and Order TypesProceedings of The London Mathematical Society
Janet Folina, C. Savage, C. Anderson (1989)
Rereading Russell: Essays on Bertrand Russell’s Metaphysics and Epistemology
(1905)
Les principes de mathématiques et leprobì eme des ensembles. Revue générale des sciences pures et appliqués
J. Neumann
Über eine Widerspruchfreiheitsfrage in der axiomatischen Mengenlehre.Crelle's Journal, 160
(1991)
The Incomplete Universe
E. Zermelo
Über Grenzzahlen und MengenbereicheFundamenta Mathematicae, 16
P. Benacerraf, H. Putnam (1984)
Philosophy of mathematics : selected readings
J. Neumann (1928)
Über die Definition durch transfinite Induktion und verwandte Fragen der allgemeinen MengenlehreMathematische Annalen, 99
Shaughan Lavine (1998)
Understanding the Infinite
C. Parsons (1984)
Mathematics in Philosophy: Selected Essays
K. Gödel (1947)
What is Cantor's Continuum Problem?American Mathematical Monthly, 54
G. Priest (1994)
The Structure of the Paradoxes of Self-ReferenceMind, 103
T. Forster (2008)
THE ITERATIVE CONCEPTION OF SETThe Review of Symbolic Logic, 1
D. Gabbay, A. Irvine, Paul Thagard (2009)
Philosophy of Mathematics
Christopher Menzel (1984)
Cantor and the Burali-Forti ParadoxThe Monist, 67
Diane Harrison (1995)
Vicious Circles
Hao Wang (1974)
From Mathematics To PhilosophyThe Mathematical Gazette, 58
A. Fraenkel (1922)
Zu den Grundlagen der Cantor-Zermeloschen MengenlehreMathematische Annalen, 86
J. Bregetzer (1989)
[The liar].Revue de l'infirmiere, 39 9
R. Ackermann (1975)
Minnesota Studies in the Philosophy of Science
G. M.
Principia MathematicaNature, 87
Grundlagen einer allgemeinen Mannigfaltigkeitslehre
Michael Hallett (1984)
Cantorian set theory and limitation of size
W. Sheldon, H. Poincaré, M. Whitehead, Bertrand Russell (1906)
Les Mathematiques et la Logique., 3
S. Krantz (2002)
The Axioms of Set Theory
(1967)
Letter to Dedekind, 1899
H. Poincaré
Science and Method
A. Fraenkel (1925)
Untersuchungen über die Grundlagen der MengenlehreMathematische Zeitschrift, 22
(1994)
Putnam and the Skolem pardox
(1906)
On insolubilia and their solution by symbolic logic. 1906b
W. Goldfarb (1989)
Russell's reasons for ramification
(1975)
What is the iterative collection
J. Heijenoort (1967)
From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931
P. Aczel (1988)
Non-well-founded sets, 14
(1967)
Circularity and Universality
J. Barwise, H. Keisler (1977)
Handbook of mathematical logicThe British Journal for the Philosophy of Science, 30
D. Mirimanoff
Remarques sur la théorie des ensembles et les antinomies cantoriennes. II, 21
[It is a great pleasure to contribute to this Festschrift for John Bell. No-one has done more than he has to demonstrate the fruitfulness of the interplay between technical mathematics and philosophical issues, and he is an inspiration to all of us who work somewhere in the borderland between mathematics and philosophy.]
Published: Jan 27, 2011
Keywords: Propositional Function; Semantic Paradox; Iterative Conception; Naive Conception; Cumulative Hierarchy
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.