Access the full text.
Sign up today, get DeepDyve free for 14 days.
Dale Johnson (1979)
The problem of the invariance of dimension in the growth of modern topology, part IIArchive for History of Exact Sciences, 25
Karl Menger (1929)
Les espaces abstraits et leur theorie considérée comme introduction a I'analyse généraleMonatshefte für Mathematik und Physik, 36
György Gáll (2015)
Béla Kerékjártó : (a biographical sketch)Teaching Mathematics and Computer Science, 2
P. Dirichlet, L. Kronecker (2012)
Ueber die Darstellung ganz willkürlicher Functionen durch Sinus- und Cosinusreihen
M. Fréchet (1906)
Sur quelques points du calcul fonctionnelRendiconti del Circolo Matematico di Palermo (1884-1940), 22
Françoise Olivier-Utard (2010)
L’université de Strasbourg de 1919 à 1939 : s’ouvrir à l’international mais ignorer l’Allemagne
J. Horváth (2006)
A Panorama of Hungarian Mathematics in the Twentieth Century I
A. Guerraggio, Frédéric Jaëck, L. Mazliak (2016)
Lines on the Horizon
M. Fréchet (1913)
Sur les classes $V$ normalesTransactions of the American Mathematical Society, 14
B. Kerékjártó (1919)
Über Transformationen des ebenen KreisringesMathematische Annalen, 80
M. Macmillan (2002)
Peacemakers : the Paris Conference of 1919 and its attempt to end war
W. Sierpinski
Sur une condition pour qu'un continu soit une courbe jordanienneFundamenta Mathematicae, 1
Angus Taylor (1982)
A study of Maurice fréchet: I. His early work on point set theory and the theory of functionalsArchive for History of Exact Sciences, 27
B. Kerékjártó (1919)
Über die Brouwerschen FixpunktsätzeMathematische Annalen, 80
M. Fréchet
Relations entre les notions de limite et de distanceTransactions of the American Mathematical Society, 19
S. Mazurkiewicz
Sur les lignes de JordanFundamenta Mathematicae, 1
LC Arboleda (1980)
281Istoriko-Matematicheskie Issledovaniya, 25
Angus Taylor (1985)
A study of Maurice Fréchet: II. Mainly about his work on general topology, 1909–1928Archive for History of Exact Sciences, 34
B. Brechner, J. Mayer (1988)
Antoine's Necklace or How to Keep a Necklace From Falling ApartCollege Mathematics Journal, 19
J. Dauben (1975)
The invariance of dimension: Problems in the early development of set theory and topology [1]Historia Mathematica, 2
François Fejtö (1989)
Requiem pour un empire défunt : histoire de la destruction de l'Autriche-HongrieForeign Affairs, 68
B. Kerékjártó (1919)
Über die periodischen Transformationen der Kreisscheibe und der KugelflächeMathematische Annalen, 80
Martina Bečvářová, Christain Binder (2010)
Mathematics in the Austrian-Hungarian Empire
M. Fréchet
Sur les ensembles abstraitsAnnales Scientifiques De L Ecole Normale Superieure, 38
[As part of the defeated side during World War I, Hungary faced a difficult situation after the signature of the Treaty of Trianon and tried to recover during the 1920s. The University of Kolosv’ar that was moved to Szeged offers a good example of this post-war reconstruction attempt. In the mathematical field, the university of Szeged promoted new young professors to rebuild a community whose influence was just emerging in the 1910s. The case of the young mathematician Béla von Kerékjártó’ is a remarkable example of this situation. His journeys across Europe illustrate how a young mathematician belonging to the defeated camp had to manage his career in the aftermath of the Great War.]
Published: Mar 28, 2021
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.