Access the full text.
Sign up today, get DeepDyve free for 14 days.
Vincent Drevelle, P. Bonnifait (2009)
High Integrity GNSS Location Zone Characterization using Interval Analysis
L. Pronzato, E. Walter (1991)
Robustness to Outliers of Bounded-Error Estimators, Consequences on Experiment DesignIFAC Proceedings Volumes, 24
V. Kreinovich (2004)
Probabilities, Intervals, What Next? Optimization Problems Related to Extension of Interval Computations to Situations with Partial Information about ProbabilitiesJournal of Global Optimization, 29
L. Jaulin, M. Kieffer, Olivier Didrit, E. Walter (2001)
Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics
H. Lahanier, E. Walter, R. Gomeni (1987)
OMNE: A new robust membership-set estimator for the parameters of nonlinear modelsJournal of Pharmacokinetics and Biopharmaceutics, 15
L. Jaulin (2006)
Computing minimal-volume credible sets using interval analysis; application to bayesian estimationIEEE Transactions on Signal Processing, 54
(1996)
A
F Abdallah (2008)
807Automatica, 44
D. Meizel, O. Lévêque, L. Jaulin, E. Walter (2002)
Initial localization by set inversionIEEE Trans. Robotics Autom., 18
L. Jaulin, M. Kieffer, Olivier Didrit, Éric Walter (2001)
Applied Interval Analysis
D. Bertsekas, I. Rhodes (1971)
Recursive state estimation for a set-membership description of uncertaintyIEEE Transactions on Automatic Control, 16
A. Caiti, A. Garulli, F. Livide, D. Prattichizzo (2002)
Set-Membership Acoustic Tracking of Autonomous Underwater VehiclesActa Acustica United With Acustica, 88
A. Gning, P. Bonnifait (2006)
Constraints propagation techniques on intervals for a guaranteed localization using redundant dataAutom., 42
(2004)
N
(2002)
L
D. Dubois, H. Prade (1991)
Random sets and fuzzy interval analysisFuzzy Sets and Systems, 42
(1987)
GOMENI. OMNE: a new robust membership-set estimator for the parame ters of nonlinear models
S. Lagrange, L. Jaulin, V. Vigneron, C. Jutten (2008)
Nonlinear Blind Parameter EstimationIEEE Transactions on Automatic Control, 53
Ramon Moore (1979)
Methods and applications of interval analysis
M. Delafosse, A. Clerentin, L. Delahoche, E. Brassart (2005)
Uncertainty and Imprecision Modeling for the Mobile Robot Localization ProblemProceedings of the 2005 IEEE International Conference on Robotics and Automation
D. Forsyth, J. Ponce (2002)
Computer Vision: A Modern Approach
D. Berleant, Lizhi Xie, Jianzhong Zhang (2003)
Statool: A Tool for Distribution Envelope Determination (DEnv), an Interval-Based Algorithm for Arithmetic on Random VariablesReliable Computing, 9
M. Kieffer, L. Jaulin, E. Walter, D. Meizel (2000)
Robust Autonomous Robot Localization Using Interval AnalysisReliable Computing, 6
F. Abdallah, A. Gning, P. Bonnifait (2008)
Box particle filtering for nonlinear state estimation using interval analysisAutom., 44
(1996)
Robustness to outliers of bounded-error estimators and consequences on experiment design Bounding Approaches to System Identification
M. Emden (1999)
Algorithmic Power from Declarative Use of Redundant ConstraintsConstraints, 4
T. Söderström, P. Stoica (1988)
System identification
V. Kreinovich, G. Solopchenko, S. Ferson, L. Ginzburg, R. Aló (2004)
Probabilities, intervals, what next? extension of interval computations to situations with partial information about probabilities
John Norton, S. Veres (1993)
Outliers in bound-based state estimation and identification1993 IEEE International Symposium on Circuits and Systems
D. Meizel, A. Preciado-Ruiz, E. Halbwachs (1996)
Estimation of Mobile Robot Localization: Geometric Approaches
(2008)
BONNIFAIT. Box particle filtering for nonlinear state estimation using terval analysis.Automatica
V. Kreinovich, Praveen Patangay, L. Longpré, S. Starks, Cynthia Campos (2003)
Outlier detection under interval and fuzzy uncertainty: algorithmic solvability and computational complexity22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003
L. Jaulin, M. Kieffer, I. Braems, E. Walter (2001)
Guaranteed non-linear estimation using constraint propagation on setsInternational Journal of Control, 74
P. Eykhoff (1974)
System Identification Parameter and State Estimation
(1971)
Recursive state estimation for a set-membership descripti on of uncertainty."IEEE Transactions on Automatic Control
L. Jaulin (2010)
Probabilistic Set-membership Approach for Robust RegressionJournal of Statistical Theory and Practice, 4
J. Berger (1988)
Statistical Decision Theory and Bayesian Analysis
L. Jaulin (2009)
Robust set-membership state estimation; application to underwater roboticsAutom., 45
T. Raïssi, N. Ramdani, Y. Candau (2004)
Set membership state and parameter estimation for systems described by nonlinear differential equationsAutom., 40
V. Kreinovich, L. Longpré, Praveen Patangay, S. Ferson, L. Ginzburg (2003)
Outlier Detection under Interval Uncertainty: Algorithmic Solvability and Computational ComplexityReliable Computing, 11
E. Walter, L. Pronzato (1997)
Identification of Parametric Models: from Experimental Data
[Interval constraint propagation methods have been shown to be efficient, robust and reliable to solve difficult nonlinear bounded-error state estimation problems. However they are considered as unsuitable in a probabilistic context, where the approximation of a probability density function by a set cannot be accepted as reliable. This paper proposes a new probabilistic approach which makes it possible to use classical set-membership observers which are robust with respect to outliers. The approach is illustrated on a localization of robots in situations where there exist a large number of outliers.]
Published: May 13, 2011
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.