Access the full text.
Sign up today, get DeepDyve free for 14 days.
João Príncipe (2012)
Sources et nature de la philosophie de la physique d’Henri Poincaré
Rajeev Kumar
Theory of HeatNature, 45
H. Poincaré, R. Magini (1899)
Les méthodes nouvelles de la mécanique célesteIl Nuovo Cimento (1895-1900), 10
Lord Kelvin
On a Decisive Test-Case Disproving the Maxwell-Boltzmann Doctrine regarding Distribution of Kinetic EnergyProceedings of The Royal Society of London, 51
O. Darrigol, J. Renn (2000)
The Emergence of Statistical Mechanics. Contribution to the Enciclopedia Italiana
A. Barberousse (2002)
La mécanique statistique : de Clausius à Gibbs
M. Born
Vorlesungen über Atommechanik
É. Borel, F. Perrin
Mécanique statistique classique
H. Poincaré (1956)
Electricité et optiqueThe Mathematical Gazette, 40
P. Harman, J. Maxwell (1990)
The Scientific Letters and Papers of James Clerk Maxwell: Volume 1, 1846-1862
C. Cercignani (1998)
Ludwig Boltzmann. The Man Who Trusted AtomsEuropean Journal of Physics, 20
H. Poincaré
Réflexions sur la théorie cinétique des gaz, 5
J. Maxwell, Niven Sir
The Scientific Papers of James Clerk Maxwell
J. Maxwell, W. Niven (2011)
On Boltzmanri's Theorem on the average distribution of energy in a system of material points
G. Gallavotti (1994)
Ergodicity, ensembles, irreversibility in Boltzmann and beyondJournal of Statistical Physics, 78
E. Zermelo
Ueber einen Satz der Dynamik und die mechanische WärmetheorieAnnalen der Physik, 293
Dennis Dieks (2003)
Anouk Barberousse.La physique face à la probabilité. (Mathesis.) 210 pp., bibl., indexes. Paris: Librairie Philosophique J. Vrin, 2000.Isis, 94
M. Klein (1973)
The Development of Boltzmann’s Statistical Ideas
L. Boltzmann
Entgegnung auf die wärmetheoretischen Betrachtungen des Hrn. E. ZermeloAnnalen der Physik, 293
I. Grattan-Guinness, H. Bos (1985)
From the calculus to set theory, 1630-1910 : an introductory historyAmerican Mathematical Monthly, 92
V. Arnold (1974)
Mathematical Methods of Classical Mechanics
James Jeans
The Dynamical Theory of GasesNature, 71
A. Léchalas, H. Poincaré
Le mécanisme et l'expérience
J. Barrow-Green (1996)
Poincare and the Three Body Problem
L. Boltzmann (2009)
Vorlesungen über Gastheorie
L. Boltzmann
Zu Hrn. Zermelo's Abhandlung „Ueber die mechanische Erklärung irreversibler Vorgänge”Annalen der Physik, 296
L. Boltzmann, F. Hasenöhrl (2012)
Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten materiellen Punkten
H. Poincaré
méthodes nouvelles de la mécanique céleste
D. Siegel (2000)
Electrodynamics from Ampère to Einstein
É. Borel
Sur les principes de la théorie cinétique des gazAnnales Scientifiques De L Ecole Normale Superieure, 23
O. Darrigol, J. Renn (2013)
The emergence of statistical mechanics
M. Klein (1973)
Mechanical Explanation at the End of the Nineteenth CenturyCentaurus, 17
U. Merzbach, C. Boyer (1989)
History of Mathematics
M. Born (1927)
The Mechanics of the Atom
A. Patrick (2011)
Calcul de probabilités
AM Ampère (1835)
432Annales de chimie et de physique, 58
Clifford Truesdell (1975)
Early kinetic theories of gasesArchive for History of Exact Sciences, 15
D. Cahan (1993)
Hermann von Helmholtz and the Foundations of Nineteenth-Century ScienceScience
L. Brillouin (1964)
Scientific Uncertainty and Information
L. Boltzmann
Zur Priorität der Auffindung der Beziehung zwischen dem zweiten Hauptsatze der mechanischen Wärmetheorie und dem Principe der kleinsten WirkungAnnalen der Physik, 219
[The first goal of this paper is to show the evolution of PoincaréPoincaré’s opinion on the mechanistic reductionmechanistic reduction of the principles of thermodynamicsthermodynamics, placing it in the context of the science of his time. The second is to present some of his work in 1890 on the foundations of statistical mechanicsstatistical mechanics. He became interested first in thermodynamics and its relation with mechanics, drawing on the work of HelmholtzHelmholtz on monocyclic systems. After a period of skepticism concerning the kinetic theory, he read some of MaxwellMaxwell’s memories and contributed to the foundations of statistical mechanics. I also show that Poincaré’s contributions to the foundations of statistical mechanics are closely linked to his work in celestial mechanicscelestial mechanics and its interest in probabilityprobability theory and its role in physics.]
Published: Mar 12, 2014
Keywords: Statistical Mechanic; Kinetic Theory; Celestial Mechanic; Canonical Equation; Probability Probability
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.