Access the full text.
Sign up today, get DeepDyve free for 14 days.
X. Wan, G. Karniadakis (2005)
An adaptive multi-element generalized polynomial chaos method for stochastic differential equationsJournal of Computational Physics, 209
R. Ghanem, P. Spanos (1990)
Stochastic Finite Elements: A Spectral Approach
M. Deb, I. Babuska, J. Oden (2001)
Solution of stochastic partial differential equations using Galerkin finite element techniquesComputer Methods in Applied Mechanics and Engineering, 190
T. Gerstner, M. Griebel (2004)
Numerical integration using sparse gridsNumerical Algorithms, 18
J. Witteveen, A. Loeven, H. Bijl (2009)
An adaptive Stochastic Finite Elements approach based on Newton–Cotes quadrature in simplex elementsComputers & Fluids, 38
O. Ernst, Antje Mugler, Hans-Jörg Starkloff, E. Ullmann (2011)
ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS
K. Karhunen (1946)
Zur Spektraltheorie stochastischer prozesse
R. Askey, James Wilson (1985)
Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomialsMemoirs of the American Mathematical Society, 54
D. Funaro (1992)
Polynomial Approximation of Differential Equations
R. Cameron, W. Martin (1947)
The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite FunctionalsAnnals of Mathematics, 48
N. Wiener (1938)
The Homogeneous ChaosAmerican Journal of Mathematics, 60
O. Maître, H. Najm, P. Pébay, R. Ghanem, O. Knio (2007)
Multi-Resolution-Analysis Scheme for Uncertainty Quantification in Chemical SystemsSIAM J. Sci. Comput., 29
B. Alpert (1993)
A class of bases in L 2 for the sparse representations of integral operatorsSiam Journal on Mathematical Analysis, 24
D. Xiu, G. Karniadakis (2002)
The Wiener-Askey Polynomial Chaos for Stochastic Differential EquationsSIAM J. Sci. Comput., 24
O. Maître, O. Knio, H. Najm, R. Ghanem (2004)
Uncertainty propagation using Wiener-Haar expansionsJournal of Computational Physics, 197
D. Xiu, G. Karniadakis (2003)
Modeling uncertainty in flow simulations via generalized polynomial chaosJournal of Computational Physics, 187
P. Levy (1948)
Processus stochastiques et mouvement brownien
T. Chantrasmi, A. Doostan, G. Iaccarino (2009)
Padé-Legendre approximants for uncertainty analysis with discontinuous response surfacesJ. Comput. Phys., 228
C. Pettit, P. Beran (2006)
Spectral and multiresolution Wiener expansions of oscillatory stochastic processesJournal of Sound and Vibration, 294
O. Maître, H. Najm, R. Ghanem, O. Knio (2004)
Multi-resolution analysis of wiener-type uncertainty propagation schemesJournal of Computational Physics, 197
[Nonlinear conservation laws subject to uncertainty are expected to develop solutions that are discontinuous in spatial as well as in stochastic dimensions. In order to allow piecewise continuous solutions to the problems of interest, we follow [7] and broaden the concept of solutions to the class of functions equivalent to a function f, denoted 𝒞f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{C}_{f}$$ \end{document}, and define a normed space that does not require its elements to be smooth functions. Let (Ω,ℱ,𝒫)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(\varOmega,\mathcal{F},\mathcal{P})$$ \end{document} be a probability space with event space Ω, and probability measure 𝒫\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{P}$$ \end{document} defined on the σ-field ℱ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{F}$$ \end{document} of subsets of Ω. Let ξ={ξj(ω)}j=1N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\boldsymbol{\xi }=\{\xi _{j}(\omega )\}_{j=1}^{N}$$ \end{document} be a set of N independent and identically distributed random variables for ω ∈ Ω. We consider second-order random fields, i.e., we consider f belonging to the space 2.1L2(Ω,𝒫)=Cf|fmeasurable w.r.t.𝒫;∫Ωf2d𝒫(ξ)<∞.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\displaystyle{ L^{2}(\varOmega,\mathcal{P}) = \left \{{\text{C}}_{ f}\vert f\text{ measurable w.r.t.}\mathcal{P};\int _{\varOmega }f^{2}d\mathcal{P}(\xi ) < \infty \right \}. }$$ \end{document} The inner product between two functionals a(ξ) and b(ξ) belonging to L2(Ω,𝒫)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$L^{2}(\varOmega,\mathcal{P})$$ \end{document} is defined by 2.2⟨a(ξ)b(ξ)⟩=∫Ωa(ξ)b(ξ)d𝒫(ξ).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\displaystyle{ \langle a(\xi )b(\xi )\rangle =\int _{\varOmega }a(\xi )b(\xi )d\mathcal{P}(\xi ). }$$ \end{document} This inner product induces the norm fL2(Ω,𝒫)2=⟨f2⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left \|f\right \|_{L_{2}(\varOmega,\mathcal{P})}^{2} =\langle f^{2}\rangle$$ \end{document}.]
Published: Sep 17, 2014
Keywords: Resolution Level; Haar Wavelet; Polynomial Basis; Stochastic Dimension; Polynomial Chaos
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.