Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
[The finite element method is based on the weak formulation (2.5). We consider N∈N,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\in \mathbb {N},$$\end{document}N≥2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2,$$\end{document} nodes zjj=1N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ z_j\right\} _{j=1}^N$$\end{document} such that -2πδ=:z1<z2<…<zN-1<zN:=2πδ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-2\pi \delta =:z_1<z_2<\ldots<z_{N-1}<z_N:=2\pi \delta ,$$\end{document} and define the subintervals Ij:=zj,zj+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {I}_j:=\left( z_j,z_{j+1}\right) $$\end{document} with the lengths hj:=zj+1-zj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_j:=z_{j+1}-z_j$$\end{document} and the parameter h:=maxj∈{1,…,N-1}hj.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h:=\max _{j\in \{1,\ldots ,N-1\}}h_j.$$\end{document} Then, for j∈{1,…,N}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j\in \{1,\ldots ,N\}$$\end{document} we introduce the basis functions ψj:Icl→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi _j:\;\mathscr {I}^\text {cl}\rightarrow \mathbb {R}$$\end{document} by the formula ψj(z):=z-zj-1/hj-1,z∈Ij-1andj≥2,zj+1-z/hj,z∈Ijandj≤N-1,0,otherwise\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \psi _j(z) :=\left\{ \begin{matrix} \left( z-z_{j-1}\right) /{h_{{\;j-1}}},&{} z\in \mathscr {I}_{j-1} \text{ and } j\ge 2,\\ \left( z_{j+1}-z\right) /{h_j},&{} z\in \mathscr {I}_j \text{ and } j\le N-1,\\ 0,&{} \text{ otherwise } \end{matrix}\right. $$\end{document}and the corresponding linear spaces Vh:=span{ψj}j=1N:={vh=∑j=1Nλjψj:λj∈C},Vh:=Vh3.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ V_h:=\mathop {\mathrm {span}}\{\psi _j\}_{j=1}^N :=\Big \{v_h=\sum _{j=1}^N\lambda _j\psi _j:\; \lambda _j\in \mathbb {C}\Big \}, \qquad {\mathbf V }_h:=V_h^3. $$\end{document}]
Published: Jul 27, 2018
Keywords: Nonlinear Boundary Value Problems; Discrete Finite Element Formulation; Component-wise Application; Layer Partition; Vector Version
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.