Access the full text.
Sign up today, get DeepDyve free for 14 days.
V. Yatsyk (2001)
A Constructive Approach to Construction of Local Equations of Irregular Dispersion and Evolution of Fields in a Quasi-Homogeneous Electrodynamic StructureTelecommunications and Radio Engineering, 56
L. Angermann (2014)
Numerical Simulations: Applications Examples And Theory
G. Evans (1994)
Two robust methods for irregular oscillatory integrals over a finite rangeApplied Numerical Mathematics, 14
E. Sanchez-Palencia (1980)
Non-Homogeneous Media and Vibration Theory
E. Süli, D. Mayers (2003)
An introduction to numerical analysis
L. Angermann, V. Yatsyk (2011)
Generation and Resonance Scattering of Waves on Cubically Polarisable Layered Structures
[The numerical solution of the system of nonlinear Hammerstein integral equations of second kind (3.17) is based on the so-called Nyström method, where the integrals are approximated by appropriate quadrature rules. As the result of this method, a nonlinear system of complex algebraic equations arises. Analogously to the finite element method described in Sect. 5.1, we consider N∈N,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\in \mathbb {N},$$\end{document}N≥2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2,$$\end{document} nodes zj,Nj=1N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ z_{j,N}\right\} _{j=1}^N$$\end{document} such that -2πδ=:z1,N<z2,N<⋯<zN-1,N<zN,N:=2πδ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-2\pi \delta =:z_{1,N}<z_{2,N}<\cdots<z_{N-1,N}<z_{N,N}:=2\pi \delta $$\end{document} and the subintervals Ij,N=zj,N,zj+1,N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {I}_{j,N}=\left( z_{j,N},z_{j+1,N}\right) $$\end{document} with the lengths hj,N=zj+1,N-zj,N.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_{j,N}=z_{j+1,N}-z_{j,N}.$$\end{document} Then, given a continuous function v:Icl→C,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v:\;\mathscr {I}^\text {cl}\rightarrow \mathbb {C},$$\end{document} a numerical integration scheme for the integral I(v):=∫Iv(z)dz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} I(v):=\int _\mathscr {I}v(z)dz \end{aligned}$$\end{document}can be defined by a quadrature rule IN(v):=∑j=1Nνj,Nv(zj,N),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} I_N(v):=\sum _{j=1}^N \nu _{j,N} v(z_{j,N})\,, \end{aligned}$$\end{document}where the coefficients νj,N∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu _{j,N}\in \mathbb {R}$$\end{document} are known.]
Published: Jul 27, 2018
Keywords: Nonlinear Hammerstein Integral Equations; Quadrature Rule; Implemented Numerical Algorithms; Numerical Spectral Analysis; Finding Nontrivial Solutions
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.