Access the full text.
Sign up today, get DeepDyve free for 14 days.
P. Müller (1960)
W.D. Kupradse, Randwertaufgaben der Schwingungstheorie und Integralgleichungen (Hochschulbücher für Mathematik, Band 21). VIII + 239 S. m. 11 Abb. Berlin 1956. Deutscher Verlag der Wissenschaften. Preis geb. DM 27,60Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik, 40
L. Angermann, V. Yatsyk (2011)
Resonance Properties of Scattering and Generation of Waves on Cubically Polarisable Dielectric Layers
L. Angermann (2014)
Numerical Simulations: Applications Examples And Theory
W. Magnus, F. Oberhettinger (1949)
Über einige Randwertprobleme der Schwingungsgleichung ... = 0 im Falle ebener Begrenzungen.Crelle's Journal, 186
E. Zeidler (1995)
Applied Functional Analysis
V. Smirnov (1964)
A course of higher mathematics
Y. Shestopalov, V. Yatsyk (2007)
Resonance scattering of electromagnetic waves by a Kerr nonlinear dielectric layerJournal of Communications Technology and Electronics, 52
L. Angermann, V. Yatsyk (2011)
Generation and Resonance Scattering of Waves on Cubically Polarisable Layered Structures
E. Zeidler (1995)
Applied Functional Analysis: Applications to Mathematical Physics
L. Angermann, Y. Shestopalov, V. Yatsyk (2013)
Mathematical models for scattering and generation of plane wave packets on layered cubically polarisable structuresFar east journal of applied mathematics, 81
[In this chapter, we show how the problem (1.47), (C1)–(C4) can be reduced to finding solutions of a system of one-dimensional nonlinear integral equations w.r.t. the components un(z),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_n(z),$$\end{document}n=1,2,3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=1,2,3,$$\end{document}z∈Icl,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z\in \mathscr {I}^\text {cl},$$\end{document} of the fields scattered and generated in the nonlinear layer. Here, we give a derivation of these equations, which is more formally than in the papers[1–7], and which extends the results of the works [8, 9] to the case of excitation of the nonlinear structure by the plane-wave packets (1.51).]
Published: Jul 27, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.