Access the full text.
Sign up today, get DeepDyve free for 14 days.
John Jackson (2020)
Classical ElectrodynamicsNature, 224
V. Volterra (2005)
Theory of Functionals and of Integral and Integro-Differential Equations
V. Serov, H. Schürmann, E. Svetogorova (2004)
Integral equation approach to reflection and transmission of a plane TE-wave at a (linear/nonlinear) dielectric film with spatially varying permittivityJournal of Physics A, 37
L. Rmander, L. Hörmander (1983)
The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis
D. Kleinman (1962)
Nonlinear Dielectric Polarization in Optical MediaPhysical Review, 126
L. Landau, E. Lifshitz, J. Sykes, J. Bell, E. Dill (1961)
Electrodynamics of continuous media
H. Schürmann, Y. Smirnov, Y. Shestopalov (2005)
Propagation of TE waves in cylindrical nonlinear dielectric waveguides.Physical review. E, Statistical, nonlinear, and soft matter physics, 71 1 Pt 2
N. Akhmediev (1998)
Spatial solitons in Kerr and Kerr-like mediaOptical and Quantum Electronics, 30
(2004)
Extreme nonlinear optics
R. Dautray, J. Lions, C. DeWitt-Morette, E. Myers (1990)
Mathematical Analysis and Numerical Methods for Science and TechnologyPhysics Today, 44
Y. Shestopalov, V. Yatsyk (2007)
Resonance scattering of electromagnetic waves by a Kerr nonlinear dielectric layerJournal of Communications Technology and Electronics, 52
Y. Kivshar (1998)
Bright and dark spatial solitons in non-Kerr mediaOptical and Quantum Electronics, 30
[Electromagnetic phenomena in a space–time domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^4_>:=\mathbb {R}^3\times (0,\infty )$$\end{document} can be governed by the system of macroscopic Maxwell’s differential equations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \begin{array}{r@{\ }c@{\ }l@{\quad }r@{\ }c@{\ }l} \dfrac{1}{c}\dfrac{\partial {\mathbf B }}{\partial t} + \nabla \times {\mathbf E }&{}=&{} 0, &{}\dfrac{1}{c}\dfrac{\partial {\mathbf D }}{\partial t} - \nabla \times {\mathbf H }&{}=&{}-\dfrac{4\pi }{c}{\mathbf J }\,,\\ \nabla \cdot {\mathbf D }&{}=&{} 4\pi \rho , &{} \nabla \cdot {\mathbf B }&{}=&{} 0, \end{array} \end{aligned}$$\end{document}where the Gaussian unit system is used (see, for example, Born and Wolf in Principles of Optic, Pergamon Press, Oxford, 1970, [1, Sect. 1.1.1], Landau et al. in Electrodynamics of Continuous Media, Elsevier Butterworth-Heinemann, Oxford, 1984, [2, Chap. IX]). Here, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf E },$$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf H },$$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf D },$$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf B }:\,\mathbb {R}^4_>\rightarrow \mathbb {R}^3$$\end{document} denote the unknown vector fields of electric and magnetic field intensity, electric and magnetic induction, respectively, c is a positive constant—the velocity of light. The function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho :\,\mathbb {R}^4_>\rightarrow \mathbb {R}$$\end{document} and the vector field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf J }:\,\mathbb {R}^4_>\rightarrow \mathbb {R}^3$$\end{document} are called the electric charge density and the electric current density, respectively. These macroscopic quantities are obtained by averaging rapidly varying microscopic quantities over spatial scales that are much larger than the typical material microstructure scales. Details of the averaging procedure can be found in standard electrodynamic textbooks, for instance, in Jackson, Classical Electrodynamics, Wiley, New York, 1999, [3].]
Published: Jul 27, 2018
Keywords: Gaussian Unit System; Unknown Vector Field; Nonlinear Dielectric Layer; Longitudinal Homogeneity; Energy Balance Law
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.