Access the full text.
Sign up today, get DeepDyve free for 14 days.
Virginie Debelley, Nicolas Privault
Sensitivity analysis of European options in jump-diffusion models via the Malliavin calculus on the Wiener space
Josep Llu, F. Utzet, J. Vives (2007)
Canonical L´ evy process and Malliavin calculus I
Félix Bou, F. Esteva, J. Font, À. Gil, L. Godo, A. Torrell, V. Verdú (2008)
Logics Preserving Degrees of Truth from Varieties of Residuated LatticesJ. Log. Comput., 22
(2008)
– 398 A model of continuous time polymer on the lattice. David Márquez-Carreras, Carles Rovira and Samy Tindel
Y. Kutoyants (2004)
Statistical Inference for Ergodic Diffusion Processes
Nicolas Privault, Anthony Reveillac (2006)
Superefficient drift estimation on the Wiener spaceComptes Rendus Mathematique, 343
D. Rodón (2006)
The Malliavin Calculus and Related Topics
E. Gobet (2001)
Local asymptotic mixed normality property for elliptic diffusion: a Malliavin calculus approachBernoulli, 7
(2000)
– 394 Coverings for function fields over F 3 . Teresa Crespo and Zbigniew Hajto
Y. Kabanov, R. Liptser, J. Stoyanov (2006)
From Stochastic Calculus to Mathematical Finance
Corcuera Universitat de Barcelona Gran Via de les Corts Catalanes
(2000)
– 407 Brown representability does not come for free. Carles Casacuberta and Amnon Neeman
Nicolas Privault, Anthony R'eveillac (2008)
Stein estimation for the drift of Gaussian processes using the Malliavin calculusAnnals of Statistics, 36
J. Corcuera, D. Nualart, Jeannette Woerner (2009)
Convergence of Certain Functionals of Integral Fractional ProcessesJournal of Theoretical Probability, 22
Editat pel Servei de Textos Matemàtics E-mail: stm@ub
O. Barndorff-Nielsen, J. Corcuera, M. Podolskij, Jeannette Woerner (2008)
Bipower Variation for Gaussian Processes with Stationary IncrementsJournal of Applied Probability, 46
(2000)
– 403 Groups definable in linear o-minimal structures
Arturo Kohatsu-Higa Osaka University Graduate School of Engineering Sciences Machikaneyama cho. 1-3 Osaka 560-8531 Japan
J. Corcuera, João Guerra (2010)
Dynamic complex hedging in additive marketsQuantitative Finance, 10
Pantelis Eleftheriou, Costas Koutras, C. Nomikos (2012)
Notions of Bisimulation for Heyting-Valued Modal LanguagesJ. Log. Comput., 22
D. Nualart, J. Vives (1995)
A Duality Formula on the Poisson Space and Some Applications
(2000)
AMS Subject Classification
O. Barndorff-Nielsen, S. Graversen, J. Jacod, M. Podolskij, N. Shephard (2004)
A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales
Pantelis Eleftheriou (2008)
A semi-linear group which is not affineAnn. Pure Appl. Log., 156
(2000)
– 408 Localization of algebras over coloured operads. Carles Casacuberta
(2007)
– 395 Optimal investment in non-homogeneous Lévy markets
(2008)
– 400 The flow cytometric scatters of bacterial axenic cultures fit the skew-Laplace distribution pattern: biological consequences. Josep Vives-Rego, OlgaJulì a
(2000)
– 404 Definable group extensions in semi-bounded o-minimal structures
B. Bobrovsky, E. Mayer-Wolf, M. Zakai (1987)
Some Classes of Global Cramer-Rao BoundsAnnals of Statistics, 15
Mark Davis, Martin Johansson (2006)
Malliavin Monte Carlo Greeks for jump diffusionsStochastic Processes and their Applications, 116
(2000)
– 409 Quadratic fields and public key cryptography. Teresa Crespo and El˙ zbieta Sowa
J. Solé, F. Utzet, J. Vives (2007)
Canonical Lévy process and Malliavin calculusStochastic Processes and their Applications, 117
Nicolas Privault, Anthony Reveillac (2009)
Stein estimation of Poisson process intensitiesStatistical Inference for Stochastic Processes, 12
Barcelona Spain e-mail: jmcorcuera@ub
Relació delsdels´delsúltims Preprints publicats
[The derivative of the log-likelihood function, known as score function, plays a central role in parametric statistical inference. It can be used to study the asymptotic behavior of likelihood and pseudo-likelihood estimators. For instance, one can deduce the local asymptotic normality property which leads to various asymptotic properties of these estimators. In this article we apply Malliavin Calculus to obtain the score function as a conditional expectation. We then show, through different examples, how this idea can be useful for asymptotic inference of stochastic processes. In particular, we consider situations where there are jumps driving the data process.]
Published: Feb 4, 2011
Keywords: Diffusion processes; Malliavin calculus; parametric estimation; Cramer-Rao lower bound; LAN property; LAMN property; jump-diffusion processes; score function
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.