Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Shear behavior of precast ultrahigh-performance concrete (UHPC) segmental beams with external tendons and dry joints

Shear behavior of precast ultrahigh-performance concrete (UHPC) segmental beams with external... In this study, ultrahigh-performance concrete (UHPC) was utilized in precast segmental beams to reduce the self-weight, shorten the construction time, and improve the performance and durability of bridges. Owing to the discontinuity in the joints, shear behavior plays a critical role in the overall structural performance of precast UHPC segmental beams (PUSBs). Therefore, four dry-jointed segmental specimens along with one monolithic specimen were designed and tested under a two-point concentrated load with various joint types, shear span-to-depth ratios (λ), and numbers of shear keys. Two types of shear failure modes were observed in the tests: shear compression failure of the web (λ = 1.44 and 2.56) and local shear failure of the flanges at the joint (λ = 3.67). The shear capacity, stiffness, and cracking load of the dry-jointed segmental specimens were lower than those of the monolithic specimen, and the single-keyed specimen exhibited better shear behavior than the three-keyed specimen. Increasing λ decreased the shear strength and stiffness of the segmental beams and considerably affected their failure modes and crack distributions. Additionally, four UHPC design codes were evaluated for their accuracy in estimating the shear strength of the specimens, and a simplified strut-and-tie model was developed to predict the shear strength of externally pre-stressed PUSBs. Finally, several design recommendations were proposed. This study is expected to facilitate the research and application of PUSBs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Civil and Mechanical Engineering Springer Journals

Shear behavior of precast ultrahigh-performance concrete (UHPC) segmental beams with external tendons and dry joints

Loading next page...
 
/lp/springer-journals/shear-behavior-of-precast-ultrahigh-performance-concrete-uhpc-Q0rgi0k5h0

References (67)

Publisher
Springer Journals
Copyright
Copyright © Wroclaw University of Science and Technology 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
eISSN
2083-3318
DOI
10.1007/s43452-023-00687-7
Publisher site
See Article on Publisher Site

Abstract

In this study, ultrahigh-performance concrete (UHPC) was utilized in precast segmental beams to reduce the self-weight, shorten the construction time, and improve the performance and durability of bridges. Owing to the discontinuity in the joints, shear behavior plays a critical role in the overall structural performance of precast UHPC segmental beams (PUSBs). Therefore, four dry-jointed segmental specimens along with one monolithic specimen were designed and tested under a two-point concentrated load with various joint types, shear span-to-depth ratios (λ), and numbers of shear keys. Two types of shear failure modes were observed in the tests: shear compression failure of the web (λ = 1.44 and 2.56) and local shear failure of the flanges at the joint (λ = 3.67). The shear capacity, stiffness, and cracking load of the dry-jointed segmental specimens were lower than those of the monolithic specimen, and the single-keyed specimen exhibited better shear behavior than the three-keyed specimen. Increasing λ decreased the shear strength and stiffness of the segmental beams and considerably affected their failure modes and crack distributions. Additionally, four UHPC design codes were evaluated for their accuracy in estimating the shear strength of the specimens, and a simplified strut-and-tie model was developed to predict the shear strength of externally pre-stressed PUSBs. Finally, several design recommendations were proposed. This study is expected to facilitate the research and application of PUSBs.

Journal

Archives of Civil and Mechanical EngineeringSpringer Journals

Published: May 13, 2023

Keywords: UHPC; Segmental beams; Precast; External tendons; Dry joints; Shear behavior

There are no references for this article.