Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Significant abundances of alkaline components in the fine and coarse aerosols over a tropical rain shadow location in peninsular India

Significant abundances of alkaline components in the fine and coarse aerosols over a tropical... This paper reports the chemistry of fine (PM2.5) and coarse (PM10) aerosols sampled over a period of three years during 2018–2021 at a semi -arid tropical location in the rain shadow region of the peninsular India. The data is classified in to dry (December to May) and wet (June to November) periods. Scavenging effect due to rains have culminated in to less concentrations of both fine and coarse aerosols and their ionic components in the wet period. Significantly high concentrations of the crustal components such as Ca, Na, K and Mg from the local dust resulted in the alkaline pH in both dry and wet periods with Ca and Mg emerging as major neutralizing components. Overall, < 20% samples of both fine and coarse aerosols depicted acidic pH. Concentration of SO4 was comparatively more than NO3 indicating towards more presence of stationary sources (industrial/domestic emissions) than mobile (vehicular emissions) sources. Combustion generated and highly absorbing black carbon aerosols showed high concentration during the dry period. Local activities comprising residential, agricultural, vehicular and industrial emissions were the major sources of aerosols at Solapur however, the contribution from the distant sources were also found to contribute as inferred from the cluster analysis and concentration weighted trajectories (CWT). The observed abundances of the alkaline dust aerosols that could act as cloud condensation nuclei or ice nuclei will have important implications on the studies related to cloud aerosol precipitation interaction over this region. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Atmospheric Chemistry Springer Journals

Significant abundances of alkaline components in the fine and coarse aerosols over a tropical rain shadow location in peninsular India

Loading next page...
 
/lp/springer-journals/significant-abundances-of-alkaline-components-in-the-fine-and-coarse-HbYJqM1BDl

References (50)

Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ISSN
0167-7764
eISSN
1573-0662
DOI
10.1007/s10874-023-09447-6
Publisher site
See Article on Publisher Site

Abstract

This paper reports the chemistry of fine (PM2.5) and coarse (PM10) aerosols sampled over a period of three years during 2018–2021 at a semi -arid tropical location in the rain shadow region of the peninsular India. The data is classified in to dry (December to May) and wet (June to November) periods. Scavenging effect due to rains have culminated in to less concentrations of both fine and coarse aerosols and their ionic components in the wet period. Significantly high concentrations of the crustal components such as Ca, Na, K and Mg from the local dust resulted in the alkaline pH in both dry and wet periods with Ca and Mg emerging as major neutralizing components. Overall, < 20% samples of both fine and coarse aerosols depicted acidic pH. Concentration of SO4 was comparatively more than NO3 indicating towards more presence of stationary sources (industrial/domestic emissions) than mobile (vehicular emissions) sources. Combustion generated and highly absorbing black carbon aerosols showed high concentration during the dry period. Local activities comprising residential, agricultural, vehicular and industrial emissions were the major sources of aerosols at Solapur however, the contribution from the distant sources were also found to contribute as inferred from the cluster analysis and concentration weighted trajectories (CWT). The observed abundances of the alkaline dust aerosols that could act as cloud condensation nuclei or ice nuclei will have important implications on the studies related to cloud aerosol precipitation interaction over this region.

Journal

Journal of Atmospheric ChemistrySpringer Journals

Published: Sep 1, 2023

Keywords: PM2.5 and PM10; Ionic composition; pH; Neutralization of acidity; Source apportionment

There are no references for this article.