Access the full text.
Sign up today, get DeepDyve free for 14 days.
L. Schwartz (1985)
Le mouvement brownien sur $\mathbb {R}^N$, en tant que semi-martingale dans $S_N$Annales De L Institut Henri Poincare-probabilites Et Statistiques, 21
B. Gaveau (1977)
Principe de moindre action, propagation de la chaleur et estimees sous elliptiques sur certains groupes nilpotentsActa Mathematica, 139
S. Dragomir, G. Tomassini (2006)
Differential Geometry and Analysis on CR Manifolds
D. Geller (1980)
The Laplacian and the Kohn Laplacian for the sphereJournal of Differential Geometry, 15
Fabrice Baudoin, M. Bonnefont (2008)
The subelliptic heat kernel on SU(2): representations, asymptotics and gradient boundsMathematische Zeitschrift, 263
A. Korányi (1982)
Kelvin transforms and harmonic polynomials on the Heisenberg groupJournal of Functional Analysis, 49
T. Carne (1985)
Brownian motion and stereographic projectionAnnales De L Institut Henri Poincare-probabilites Et Statistiques, 21
Fabrice Baudoin, Jing Wang (2011)
The subelliptic heat kernel on the CR sphereMathematische Zeitschrift, 275
R. Beals, B. Gaveau, P. Greiner (2000)
Hamilton–Jacobi theory and the heat kernel on Heisenberg groupsJournal de Mathématiques Pures et Appliquées, 79
M. Yor (1985)
À propos de l’inverse du mouvement brownien dans $\mathbb {R}^n (n \geqq 3)$Annales De L Institut Henri Poincare-probabilites Et Statistiques, 21
Fabrice Baudoin, Jing Wang (2016)
Stochastic areas, winding numbers and Hopf fibrationsProbability Theory and Related Fields, 169
[We study the stochastic processes that are images of Brownian motions on Heisenberg group H2n+1 under conformal maps. In particular, we obtain that Cayley transform maps Brownian paths in H2n+1 to a time changed Brownian motion on CR sphere 𝕊2n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{S}^{2n+1}$$ \end{document} conditioned to be at its south pole at a random time. We also obtain that the inversion of Brownian motion on H2n+1 started from x ≠ 0, is up to time change, a Brownian bridge on H2n+1 conditioned to be at the origin.]
Published: Sep 27, 2017
Keywords: Brownian bridge; Cayley transform; Doob’s h-process; Heisenberg group; Kelvin transform
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.