Access the full text.
Sign up today, get DeepDyve free for 14 days.
Zhen-Qing Chen, T. Kumagai (2007)
Heat kernel estimates for jump processes of mixed types on metric measure spacesProbability Theory and Related Fields, 140
L. Caffarelli, L. Silvestre (2009)
The Evans-Krylov theorem for nonlocal fully nonlinear equationsAnnals of Mathematics, 174
Zhen-Qing Chen (2009)
Symmetric jump processes and their heat kernel estimatesScience in China Series A: Mathematics, 52
Zhen-Qing Chen, Xicheng Zhang (2013)
Heat kernels and analyticity of non-symmetric jump diffusion semigroupsProbability Theory and Related Fields, 165
Zhen-Qing Chen, T. Kumagai (2003)
Heat kernel estimates for stable-like processes on d-setsStochastic Processes and their Applications, 108
Zhen-Qing Chen, Z. Qian, Yaozhong Hu, Weian Zheng (1998)
Stability and Approximations of Symmetric Diffusion Semigroups and KernelsJournal of Functional Analysis, 152
R. Bass, Hua Ren (2012)
Meyers inequality and strong stability for stable-like operatorsarXiv: Functional Analysis
R. Bass, D. Levin (2002)
Transition Probabilities for Symmetric Jump ProcessesTransactions of the American Mathematical Society, 354
[Let d≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$d\geqslant 1$$ \end{document} and α ∈ (0, 2). Consider the following non-local and non-symmetric Lévy-type operator on ℝd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{R}^{d}$$ \end{document}: Lακf(x):=p.v.∫ℝd(f(x+z)−f(x))κ(x,z)|z|d+αdz,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\displaystyle{\mathcal{L}_{\alpha }^{\kappa }f(x):= \mbox{ p.v.}\int _{\mathbb{R}^{d}}(\,f(x + z) - f(x))\frac{\kappa (x,z)} {\vert z\vert ^{d+\alpha }} \mathrm{d}z,}$$ \end{document} where 0<κ0≤κ(x,z)≤κ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$0 <\kappa _{0}\leqslant \kappa (x,z)\leqslant \kappa _{1}$$ \end{document}, κ(x, z) = κ(x, −z), and |κ(x,z)−κ(y,z)|≤κ2|x−y|β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\vert \kappa (x,z) -\kappa (\,y,z)\vert \leqslant \kappa _{2}\vert x - y\vert ^{\beta }$$ \end{document} for some β ∈ (0, 1). In Chen and Zhang (Probab Theory Relat Fields 165:267–312, 2016), we obtained two-sided estimates on the fundamental solution (also called heat kernel) pακ(t, x, y) of Lακ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{L}_{\alpha }^{\kappa }$$ \end{document}. In this note, we establish pointwise estimate on |pακ(t,x,y)−pακ̃(t,x,y)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\vert p_{\alpha }^{\kappa }(t,x,y) - p_{\alpha }^{\tilde{\kappa }}(t,x,y)\vert$$ \end{document} in terms of ∥κ−κ̃∥∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\|\kappa -\tilde{\kappa }\|_{\infty }$$ \end{document}.]
Published: Sep 27, 2017
Keywords: Heat kernel estimate; Levi’s method; Non-symmetric stable-like operator; Strong stability; Primary 60J35; 47G20; 60J75; Secondary 47D07
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.