Access the full text.
Sign up today, get DeepDyve free for 14 days.
N. Bouleau, L. Denis (2008)
Energy image density property and the lent particle method for Poisson measuresarXiv: Probability
J. Picard (1996)
On the existence of smooth densities for jump processesProbability Theory and Related Fields, 105
D. Nualart, J. Vives (1990)
Anticipative calculus for the Poisson process based on the Fock space, 24
Nicolas Privault (1998)
A pointwise equivalence of gradients on configuration spacesComptes Rendus De L Academie Des Sciences Serie I-mathematique, 327
(1981)
Stochastic Differential Equation and Diffusion Processes
Paris-Est 6 Avenue Blaise Pascal 77455 Marne-La-Vallée Cedex 2 FRANCE bouleau@enpc
N. Bouleau (2008)
Error calculus and regularity of Poisson functionals: the lent particle methodComptes Rendus Mathematique, 346
(2008)
Applications de la Théorie des Erreurs par Formes de Dirichlet, Thesis Univ
M. Fukushima, Y. Oshima, M. Takeda (1994)
Dirichlet forms and symmetric Markov processes
N. Bouleau, L. Denis (2009)
Application of the lent particle method to Poisson-driven SDEsProbability Theory and Related Fields, 151
N. Bouleau (2003)
Error Calculus for Finance and Physics: The Language of Dirichlet Forms
L. Rogers (1982)
Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00European Journal of Operational Research, 10
L. Denis (2000)
A criterion of density for solutions of Poisson-driven SDEsProbability Theory and Related Fields, 118
Zhi-Ming Ma, M. Röckner (2000)
Construction of diffusions on configuration spacesOsaka Journal of Mathematics, 37
Peter Kuster (1991)
Malliavin calculus for processes with jumpsActa Applicandae Mathematica, 23
N. Bouleau, F. Hirsch (1986)
Formes de Dirichlet gnrales et densit des variables alatoires relles sur l'espace de WienerJournal of Functional Analysis
L. Ralaivola (2010)
Chromatic PAC-Bayes Bounds for Non-IID Data : Applications to Ranking and Stationary β-Mixing Processes
N. Bouleau, F. Hirsch (1991)
Dirichlet Forms and Analysis on Wiener Space
N. Bouleau, L. Denis (2013)
Iteration of the Lent Particle Method for Existence of Smooth Densities of Poisson FunctionalsPotential Analysis, 38
A. Coquio (1993)
Forme de Dirichlet sur l'espace canonique de Poisson et applications aux équations différentielles stochastiquesAnnales De L Institut Henri Poincare-probabilites Et Statistiques, 29
Nicolas Privault (1999)
Equivalence of gradients on configuration spaces, 7
Y. Ishikawa, H. Kunita (2006)
Malliavin calculus on the Wiener–Poisson space and its application to canonical SDE with jumpsStochastic Processes and their Applications, 116
Shiqi Song (1992)
Admissible vectors and their associated Dirichlet formsPotential Analysis, 1
[We present a new approach to absolute continuity of laws of Poisson functionals. The theoretical framework is that of local Dirichlet forms as a tool for studying probability spaces. The argument gives rise to a new explicit calculus that we present first on some simple examples: it consists in adding a particle and taking it back after computing the gradient. Then we apply the method to SDE’s driven by Poisson measure.]
Published: Jul 12, 2011
Keywords: Stochastic differential equation; Poisson functional; Dirichlet form; energy image density; Lévy processes; gradient; carré du champ
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.