Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
[Nowadays, it is well understood that brain activity generates a variable electromagnetic field that can be detected quite accurately by using scalp electrodes as well as by superconductive magnetic sensors. Electroencephalography (EEG) and magnetoencephalography (MEG) are therefore useful techniques for the study of brain dynamics and functional cortical connectivity because of their high temporal resolution i.e., milliseconds (Nunez, P., 1981).]
Published: Jan 1, 2010
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.