Access the full text.
Sign up today, get DeepDyve free for 14 days.
V. Vizgin (1994)
Unified Field Theories: in the first third of the 20th century
N. Straumann (1987)
Zum Ursprung der Eichtheorien bei Hermann WeylPhysikalische Blätter, 43
J. Bourguignon, H. Lawson (1982)
YANG-MILLS THEORY: ITS PHYSICAL ORIGINS AND DIFFERENTIAL GEOMETRIC ASPECTS
H. Weyl (1927)
Quantenmechanik und GruppentheorieZeitschrift für Physik, 46
H. Weyl (1929)
Elektron und Gravitation. IZeitschrift für Physik, 56
I. Stamatescu (1994)
On Renormalization in Quantum Field Theory and the Structure of Space-Time
W. Clifford (1976)
On the Space-Theory of Matter
E. Witten (1994)
Monopoles and four-manifoldsMathematical Research Letters, 1
Luciano Boi (2004)
Geometrical and topological foundations of theoretical physics: from gauge theories to string programInt. J. Math. Math. Sci., 2004
H. Weyl
Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen durch lineare Transformationen. IIMathematische Zeitschrift, 24
F. S.M., E. Cartan, Par Cartan
Les groupes projectifs qui ne laissent invariante aucune multiplicité planeBulletin de la Société Mathématique de France, 41
M. Riesz, E. Bolinder, P. Lounesto (1993)
Clifford Numbers and Spinors
E. Scholz (1995)
Hermann Weyl’s “Purely Infinitesimal Geometry”
Luciano Boi, D. Flament, J.-M. Salanskis, histoire épistémologie (1992)
1830-1930 : a century of geometry : epistemology, history, and mathematics
H. Weyl (1940)
The Classical Groups
C. Taubes (1982)
Self-dual Yang-Mills connections on non-self-dual 4-manifoldsJournal of Differential Geometry, 17
Chengran Yang (1977)
MAGNETIC MONOPOLES, FIBER BUNDLES, AND GAUGE FIELDSAnnals of the New York Academy of Sciences, 294
Abdus Salam, J. Strathdee (1982)
KALUZA-KLEIN THEORYInternational Journal of Modern Physics A, 01
T. Regge (1992)
Physics and differential geometry, 402
T. Wu, C. Yang (1975)
Concept of Nonintegrable Phase Factors and Global Formulation of Gauge FieldsPhysical Review D, 12
Topological quantum field theory
E. Witten (1989)
Quantum field theory and the Jones polynomialCommunications in Mathematical Physics, 121
W. Pauli (1927)
Zur Quantenmechanik des magnetischen ElektronsZeitschrift für Physik, 43
R. Blattner (1961)
On Induced RepresentationsAmerican Journal of Mathematics, 83
P. Dirac (1928)
The quantum theory of the electronProceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences, 117
J. Dieudonne (1967)
Sur les groupes classiques
Y. Manin (1988)
Gauge Field Theory and Complex Geometry
A. Borel (2001)
Hermann Weyl and Lie Groups
A. Derdzinski
GEOMETRY OF ELEMENTARY PARTICLES
A. Sur, D. Jasnow, I. Lowe (1975)
Spin dynamics for the one-dimensional XY model at infinite temperaturePhysical Review B, 12
S. Donaldson (1983)
A new proof of a theorem of Narasimhan and SeshadriJournal of Differential Geometry, 18
M. Ricci, T. Levi-Civita (1900)
Méthodes de calcul différentiel absolu et leurs applicationsMathematische Annalen, 54
B. Riemann
Über die Hypothesen, welche der Geometrie zu Grunde liegenPhysikalische Blätter, 10
F. Peter, H. Weyl (1927)
Die Vollständigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen GruppeMathematische Annalen, 97
H. Weyl
Eine neue Erweiterung der RelativitätstheorieAnnalen der Physik, 364
E. Christoffel
Ueber die Transformation der homogenen Differentialausdrücke zweiten Grades.Journal für die reine und angewandte Mathematik (Crelles Journal), 1869
H. Hopf (1931)
ber die Abbildungen der dreidimensionalen Sphre auf die KugelflcheMathematische Annalen, 104
J. Bourguignon (1992)
Transport parallèle et connexions en Géométrie et en Physique
Luciano Boi (2019)
Some Mathematical, Epistemological, and Historical Reflections on the Relationship Between Geometry and Reality, Space–Time Theory and the Geometrization of Theoretical Physics, from Riemann to Weyl and BeyondFoundations of Science, 24
A. Einstein
The Foundation of the General Theory of Relativity, 14
Shoshichi Kobayaschi (1957)
Theory of connectionsAnnali di Matematica Pura ed Applicata, 43
D. Hilbert (1924)
Die Grundlagen der PhysikMathematische Annalen, 92
R. Deheuvels (1981)
Formes quadratiques et groupes classiques
A. Trautman, K. Trautman (1994)
Generalized pure spinorsJournal of Geometry and Physics, 15
L. O'raifeartaigh (2020)
The Dawning of Gauge Theory
H. Weyl
Theorie der Darstellung kontinunierlicher durch lineare Transformationen II.Mathematische Zeitschrift, 24
C. Yang, R. Mills (1954)
Conservation of Isotopic Spin and Isotopic Gauge InvariancePhysical Review, 96
H. Gehman, H. Weyl (1950)
Philosophy of Mathematics and Natural SciencePhilosophy and Phenomenological Research, 11
J. Wheeler (1986)
Hermann Weyl and the Unity of KnowledgeAmerican Scientist
D. Freed, Karen Uhlenbeck (1984)
Instantons and Four-Manifolds
Luciano Boi (2009)
Ideas of Geometrization, Geometric Invariants of Low-Dimensional Manifolds, and Topological Quantum Field TheoriesInternational Journal of Geometric Methods in Modern Physics, 06
P. Dirac (1982)
Principles of Quantum Mechanics
H. Weyl
Gruppentheorie und Quantenmechanik
A. Einstein, Zugangsinformation
Die Grundlage der allgemeinen Relativitätstheorie
M. Atiyah, J. Jones (1978)
Topological aspects of Yang-Mills theoryCommunications in Mathematical Physics, 61
D. Gross (1992)
Gauge Theory-Past, Present, and Future?Chinese Journal of Physics, 30
Pures Appliquées, E. Cartan
Les groupes projectifs continus réels qui ne laissent invariante aucune multiplicitéJournal de Mathématiques Pures et Appliquées, 10
A. Einstein (2005)
Die Grundlage der allgemeinen Relativitätstheorie [AdP 49, 769 (1916)]Annalen der Physik, 14
E. Cartan
Les sous-groupes des groupes continus de transformationsAnnales Scientifiques De L Ecole Normale Superieure, 25
M. Atiyah, N. Hitchin (1988)
The Geometry and Dynamics of Magnetic Monopoles
T. Kibble (1979)
Geometrization of quantum mechanicsCommunications in Mathematical Physics, 65
H. Weyl (1931)
The Theory Of Groups And Quantum Mechanics
C. Chevalley (1946)
Theory of Lie Groups
P. Lounesto (1997)
Clifford Algebras and Spinors
H. Haken (1954)
Eine Methode zur strengen Behandlung der Wechselwirkung zwischen einem Elektron und mehreren GitteroszillatorenZeitschrift für Physik, 138
Alexander Gray, Doménica Garzón, Indranil Das, Noora Ghadiri (1959)
Significance of Electromagnetic Potentials in the Quantum TheoryPhysical Review, 115
M. Atiyah, R. Bott (1983)
The Yang-Mills equations over Riemann surfacesPhilosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 308
G. Morandi (1992)
The Role of Topology in Classical and Quantum Physics
T. Lee, C. Yang (1956)
Question of Parity Conservation in Weak InteractionsPhysical Review, 104
Luciano Boi (2006)
Mathematical Knot Theory
John Taylor, H. Quinn (1979)
Gauge Theories of Weak Interactions
M. Atiyah (1987)
New invariants of 3 and 4 dimensional manifolds
S. Chern, J. Simons (1974)
Characteristic forms and geometric invariantsAnnals of Mathematics, 99
R. Brauer, H. Weyl (1935)
Spinors in n DimensionsAmerican Journal of Mathematics, 57
C. Chevalley (1955)
The construction and study of certain important algebras
Luciano Boi (2004)
Theories of Space-Time in Modern PhysicsSynthese, 139
Tsung-Dao Lee (1981)
Particle physics and introduction to field theory
K. Moriyasu (1982)
The renaissance of gauge theoryContemporary Physics, 23
S. Donaldson (1996)
The Seiberg-Witten equations and 4-manifold topologyBulletin of the American Mathematical Society, 33
L. Boi, D. Palladino (1995)
Recensioni/Reviews-Le probleme mathematique de l'espace. Une quete de l'intelligible
D. Flament, Luciano Boi, J.-M. Salanskis (1992)
1830-1930: A Century of Geometry
[As it is well-known, Hermann Weyl pioneered two major conceptual trends in the mathematical and physical sciences. The first was the search for a unified theory of the forces of gravity and of electromagnetism. The second, closely related to the previous, was the search for a new geometrical framework appropriate for the elucidation of such a connection. According to Weyl, the first search is essentially dependent on the second, since a new theory of physical forces must rest upon the development of a new kind of geometry capable of explaining the structure of space-time at different scales. Two philosophical ideas underlies the Weyl’s program of geometrization of physics, namely that of emergence and that of the causal power of geometrical objects (see Wheeler JA: Am Sci 74:366–375, 1986; Penrose R: Hermann Weyl’s space-time and conformal geometry. In: Hermann Weyl 1885 – 1985 centenary lectures. Springer, Berlin/Heidelberg, 1985; Boi L: Le problème mathématique de l’espace, with a foreword of R. Thom. Springer, Berlin/Heidelberg, 1995, Boi L: Synthese 139:429–489, 2004a, Boi L: Int J Math Math Sci 2004(34):1777–1836, 2004b, 2019). The first amount to say that many kinds of physical phenomena in nature emerge out from changes that can occur in the structures and dynamics of space-time itself. The second stresses the fact that geometrical concepts are involved in, rather than applied to, natural phenomena. This new geometric theory, which was first introduced by Weyl in 1918 (Weyl H: Sitzungberichte der Königlichen Preussische Akademie der Wissenschaft, Berlin 26:465–480, 1918a) and thereafter in 1928 (Weyl H: Gruppentheorie und Quantenmechanik. Hirzel, Leipzig, 1928) within the context of quantum mechanics, was grounded on the idea of gauge invariance, or a non-integrable scale factor, which in some formulations of quantum mechanics, especially in those given by Aharonov and Bohm in 1959, can be translated in a phase factor. In 1954, the physicists Yang and Mills rediscovered the Weyl’s gauge principle and developed it within a different physical context and a new mathematical framework. They proposed that the strong nuclear interaction be described by a field theory like electromagnetism, which is exactly gauge invariant. They postulated that the local gauge group was the SU(2) isotopic-spin group. This idea was revolutionary because it changed the very concept of ‘identity’ of an elementary particle. The novel idea that the isotopic spin connection, and therefore the potential, acts like the SU(2) symmetry group is the most important result of the Yang-Mills theory. This concept shows explicitly how the gauge symmetry group is built into the dynamics of the interaction between particles and fields (see Atiyah 1979, 1997).]
Published: Oct 10, 2019
Keywords: Geometry; Connection; Gauge theory; Spinors; Orthogonal group; Geometric algebra; General relativity; Quantum mechanics
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.