Access the full text.
Sign up today, get DeepDyve free for 14 days.
L. Boi (1995)
Le concept de variété et la nouvelle géométrie de l'espace dans la pensée de Bernhard Riemann : L'émergence d'une nouvelle vision des mathématiques et de ses rapports avec les sciences fondamentales, 45
H. Weyl, H. Brose (1952)
Space, Time, Matter
B. Turner, G. Bateson (1980)
Mind and Nature
H. Weyl
Raum, Zeit, Materie
C. Lobo (2017)
Le projet husserlien de réforme de la logique et ses prolongements chez Gian-Carlo RotaRevue de Synthèse
D. Pradelle (2000)
L'archéologie du monde. Constitution de l'espace, idéalisme et intuitionnisme chez Husserl
L. Boi (1996)
Les géométries non euclidiennes, le problème philosophique de l’espace et la conception transcendantale; Helmholtz et Kant, les néo-kantiens, Einstein, Poincaré et Mach, 87
Bennewitz (1928)
Philosophie der Mathematik und Naturwissenschaft. Von Herrn. Weyl. Sonderdruck aus dem Handbuch der Philosophie von A. Baeumler und M. Schröter. Verlag R. Oldenbourg, München u. Berlin 1927. 7,50 MAngewandte Chemie, 41
E. Scholz (1982)
Herbart's influence on bernhard RiemannHistoria Mathematica, 9
R. Goodstein, D. Hilbert, W. Ackermann (1928)
Grundzüge der theoretischen LogikThe Journal of Philosophy, 35
E. Scholz (1982)
Riemanns frühe Notizen zum Mannigfaltigkeitsbegriff und zu den Grundlagen der GeometrieArchive for History of Exact Sciences, 27
D. Hilbert
Les principes fondamentaux de la géométrieAnnales Scientifiques De L Ecole Normale Superieure, 17
H. Weyl
Mathematische Analyse des Raumproblems: Vorlesungen, gehalten in Barcelona und Madrid
G. Bachelard, D. Parrochia
La valeur inductive de la relativité
H. Grassmann (2012)
Die lineale Ausdehnungslehre, eine neuer Zweig der Mathematik, dargestellt und durch Anwendungen auf die übrigen Zweige der Mathematik, wie auch auf die Statik, Mechanik, die Lehre vom Magnetismus und die Krystallonomie erläutert.
G. Bachelard (1937)
L'Experience de l'Espace dans la Physique Contemporaine.The Journal of Philosophy, 34
Aurélien Zincq (2014)
Intervention lors du débat autour du livre de Benoît Timmermans, Histoire philosophique de l’algèbre moderne. Les origines romantiques de la pensée abstraite. (Paris, Classiques Garnier, coll. « Histoire et philosophie des sciences », 2012).
E. Scholz (1992)
Riemann's vision of a new approach to geometry, 402
E. Cartan
Sur les variétés à connexion affine et la théorie de la relativité généralisée. (première partie)Annales Scientifiques De L Ecole Normale Superieure, 40
B. Riemann, R. Dedekind, H. Weber (2013)
Fragment aus der Analysis Situs
E. Husserl (1954)
Die Krisis der europäischen Wissenschaften und die transzendentale Phänomenologie
E. Scholz (1999)
CHAPTER 2 – The Concept of Manifold, 1850–1950
E. Husserl (1977)
Formal and transcendental logic
H. Weyl (1932)
Das Kontinuum : kritische Untersuchungen über die Grundlagen der Analysis
D. Bernard, L. Soler, Soler Léna, A. Schnell, Grete Hermann (1996)
Les Fondements philosophiques de la mécanique quantique
P. Kerszberg (1992)
Of Exact and Inexact Essences in Modern Physical Science
[Husserl and Weyl share a common philosophical and mathematical heritage, among other things, Riemannian and Kantian. For both, substantial parts of the problem of space found a solution with the recent development of mathematics and physics. For both, however, a philosophical residuum remains, that of the relation of space (as a form of intuition) to the real world (as it appears and is posited through ordinary experience and intersubjective communication). But, starting from a Kantian conception of space as an a priori subjective form, Weyl repeatedly adapts this idea to the recent development of geometry and physics until he converts it in a form of radicalization of Riemann’s view, i.e. infinitesimal geometry. Conversely the starting point of Husserl’s investigations on space, from 1892 onward, is motivated by Riemann’s break-up with former conceptions (including Gauss’s), a revolution that Husserl will “thematize”, after his phenomenological breakthrough, as an historical example of formalization, unclosing the larger field of formal conceptions of “abstract spaces” as manifolds provided with additional structures (field, group, etc.), while the a priori form of space (and time) appears now as a multilayered and complex formation, clearly noticed and praised by Weyl, as an enrichment of Kant’s transcendental aesthetics.]
Published: Oct 10, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.