Access the full text.
Sign up today, get DeepDyve free for 14 days.
N. Straumann (1987)
Zum Ursprung der Eichtheorien bei Hermann WeylPhysikalische Blätter, 43
V. Smirnov (1961)
Linear algebra and group theory
H. Weyl (1929)
Elektron und Gravitation. IZeitschrift für Physik, 56
K. Brading (2002)
Which symmetry? Noether, Weyl, and conservation of electric chargeStudies in History and Philosophy of Modern Physics, 33
H. Weyl
Reine InfinitesimalgeometrieMathematische Zeitschrift, 2
(1979)
Wissenschaftlicher Briefwechsel, Band I: 1919-1929
E. Scholz (1995)
Hermann Weyl’s “Purely Infinitesimal Geometry”
Erich Kretschmann
Über den physikalischen Sinn der Relativitätspostulate, A. Einsteins neue und seine ursprüngliche RelativitätstheorieAnnalen der Physik, 358
V. Vizgin (1994)
Unified Field Theories
A. Afriat (2013)
Weyl’s Gauge ArgumentFoundations of Physics, 43
H. Weyl (1940)
The Classical Groups
E. Scholz (1994)
Hermann Weyl’s Contribution to Geometry, 1917–1923
H. Weyl (2005)
Geometrie und PhysikNaturwissenschaften, 19
E. Scholz (2001)
Weyls Infinitesimalgeometrie, 1917 – 1925
R. Penrose (2016)
Fashion, Faith, and Fantasy in the New Physics of the Universe
T. Cao (2019)
Conceptual Developments of 20th Century Field Theories
C. Sasaki, M. Sugiura, J. Dauben (1994)
The intersection of history and mathematics
H. Lyre (2004)
Holism and structuralism in U(1) gauge theoryStudies in History and Philosophy of Modern Physics, 35
L. Broglie
Recherches sur la théorie des quanta
H. Dörrie (1951)
Einführung in die Funktionentheorie
Christopher Martin (2002)
Gauge Principles, Gauge Arguments and the Logic of NaturePhilosophy of Science, 69
P. Dirac (1928)
The quantum theory of the electronProceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences, 117
H. Lyre (2001)
The Principles of GaugingPhilosophy of Science, 68
E. Scholz (2004)
Hermann Weyl's Analysis of the “Problem of Space” and the Origin of Gauge StructuresScience in Context, 17
K. Brading, E. Castellani (2003)
Symmetries in Physics
E. Schrödinger
Quantisierung als EigenwertproblemAnnalen der Physik, 384
R. Gambini, J. Pullin (2011)
A First Course in Loop Quantum Gravity
H. Brown (1998)
Aspects of Objectivity in Quantum Mechanics
H. Weyl
Philosophie der Mathematik und Naturwissenschaft
G. Hegel
Wissenschaft der Logik
(2001)
Hermann Weyl: mathematician, physicist, philosopher
P. Dirac (1931)
Quantised Singularities in the Electromagnetic FieldProceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences, 133
A. Einstein
The Foundation of the General Theory of Relativity, 14
H. Weyl (2008)
Einfuehrung in die funktionentheorie
Abraham Pais (1982)
"Subtle is the Lord...": The Science and Life of Albert Einstein
L. O'raifeartaigh (2020)
The Dawning of Gauge Theory
A. Afriat (2008)
How Weyl stumbled across electricity while pursuing mathematical justiceStudies in History and Philosophy of Modern Physics, 40
Memoria Levi-Civita (1916)
Nozione di parallelismo in una varietà qualunque e conseguente specificazione geometrica della curvatura riemannianaRendiconti del Circolo Matematico di Palermo (1884-1940), 42
L. O'raifeartaigh (2000)
Gauge theory: Historical origins and some modern developmentsReviews of Modern Physics, 72
C. Yang, R. Mills (1954)
Conservation of Isotopic Spin and Isotopic Gauge InvariancePhysical Review, 96
T. Körner (1996)
The Pleasures of Counting: Subtle is the Lord
T. Ryckman (2003)
Surplus Structure from the Standpoint of Transcendental Idealism: The World Geometries of Weyl and EddingtonPerspectives on Science, 11
P. Teller (2000)
The Gauge ArgumentPhilosophy of Science, 67
S. Auyang (1995)
How Is Quantum Field Theory Possible
H. Weyl
Raum, Zeit, Materie
P. Dirac (1925)
The fundamental equations of quantum mechanicsProceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences, 109
E. Scholz (2004)
Introducing groups into quantum theory (1926¿1930)Historia Mathematica, 33
H. Weyl
Feld und MaterieAnnalen der Physik, 370
Holger Lyre (2004)
Lokale Symmetrien und Wirklichkeit: Eine naturphilosophische Studie über Eichtheorien und Strukturenrealismus
T. Ryckman (2003)
Symmetries in Physics: The philosophical roots of the gauge principle: Weyl and transcendental phenomenological idealism
H. Weyl
Gravitation und Elektrizität
Thomas Ryckman (2005)
The reign of relativity : philosophy in physics 1915-1925
S. Seth (2004)
Review of: Scholz, Erhard (ed): Hermann Weyl's Raum-Zeit-Materie and a general introduction to his scientific work. Basel [u.a.]: Birkhäuser 2001
Mathematics meets physics: a contribution to their interaction in the 19th and the first half of the 20th century
L. Ryder (1956)
Quantum field theory
Christopher Martin (2003)
Symmetries in Physics: On continuous symmetries and the foundations of modern physics
Skúli Sigurdsson (2001)
Journeys in spacetime
H. Weyl
Gruppentheorie und Quantenmechanik
A. Einstein, Zugangsinformation
Die Grundlage der allgemeinen Relativitätstheorie
R. Healey (2001)
On the Reality of Gauge PotentialsPhilosophy of Science, 68
I. Aitchison, A. Hey (1984)
Gauge theories in particle physics
A. Einstein (2005)
Die Grundlage der allgemeinen Relativitätstheorie [AdP 49, 769 (1916)]Annalen der Physik, 14
Tristan Needham (1997)
Visual Complex Analysis
Jun Sakurai, Henry Valk (1969)
Advanced Quantum MechanicsPhysics Today, 22
P. Ramond (1981)
Field Theory: A Modern Primer
T. Ryckman (2009)
Hermann Weyl and “First Philosophy”: Constituting Gauge Invariance
I. Vladimirov, N. Mit︠s︡kevich, J. Horsky, F. Fedorov (1987)
Space Time Gravitation
(2011)
Mathematische Physik bei Hermann Weyl – zwischen
R. Healey (2007)
Gauging what's real : the conceptual foundations of contemporary gauge theories
H. Haken (1954)
Eine Methode zur strengen Behandlung der Wechselwirkung zwischen einem Elektron und mehreren GitteroszillatorenZeitschrift für Physik, 138
K. Brading (2009)
On continuous symmetries and the foundations of modern physics
Brian Blank (2006)
The Road to Reality : A Complete Guide to the Laws of the Universe
R. Penrose, W. Rindler, J. Goldberg (1986)
Spinors and Space‐Time, Volume I: Two‐Spinor Calculus and Relativistic FieldsPhysics Today, 39
Gabriel Catren (2008)
Geometric foundations of classical Yang–Mills theoryStudies in History and Philosophy of Modern Physics, 39
(2015)
Electricity, gravity and matter
T. Ryckman (2005)
The Reign of Relativity
R. Penrose, Hetty Zock (2005)
A complete guide to the laws of the universe
(1996)
the electromagnetic field arises naturally by demanding invariance of the action [ . . . ] under local (x-dependent) rotations
M. Göckeler, T. Schucker (1987)
Differential Geometry, Gauge Theories, and Gravity: Contents
On altering ψ by multiplying it by the gauge factor e iλ we must at the same time replace dϕ by dϕ − dλ as is immediately seen from this formula of the covariant differential
(2001)
editor) (2001b) Hermann Weyl’s Raum-Zeit-Materie and a general intro
E. Scholz (2001)
Hermann Weyl's Raum-Zeit-Materie and a general introduction to his scientific workThe Mathematical Gazette, 85
Thomas Hawkins (2012)
Emergence of the Theory of Lie Groups
H. Weyl (1929)
GRAVITATION AND THE ELECTRON.Proceedings of the National Academy of Sciences of the United States of America, 15 4
E. Scholz (2022)
H. Weyl's and E. Cartan's proposals for infinitesimal geometry in the early 1920s
E. Scholz (2004)
Local spinor structures in V. Fock's and H. Weyl's work on the Dirac equation (1929)arXiv: History and Philosophy of Physics
K. Popper, H. Keuth (1935)
Logik der ForschungThe Journal of Philosophy, 32
[The logic of gauge theory is considered by tracing its development from general relativity to Yang-Mills theory, through Weyl’s two gauge theories. A handful of elements—which for want of better terms can be called geometrical justice, matter wave, second clock effect, twice too many energy levels—are enough to produce Weyl’s second theory; and from there, all that’s needed to reach the Yang-Mills formalism is a non-Abelian structure group (say 𝕊𝕌(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \mathbb{SU}(N) $$ \end{document}).]
Published: Oct 10, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.