Access the full text.
Sign up today, get DeepDyve free for 14 days.
(1970)
Spin und Torsion in der allgemeinen Relativitätstheorie oder die Riemann-Cartansche Geometrie der Welt.” Habilitationsschrift, Mimeograph
D. Laugwitz (1958)
Über eine Vermutung von Hermann Weyl zum RaumproblemArchiv der Mathematik, 9
T. Kibble (1961)
Lorentz Invariance and the Gravitational FieldJournal of Mathematical Physics, 2
H. Weyl
Reine InfinitesimalgeometrieMathematische Zeitschrift, 2
(1955)
Ins Deutsche übersetzt von Lulu Bechtolsheim
A. Trautman (2006)
Einstein-Cartan TheoryarXiv: General Relativity and Quantum Cosmology
E. Scheibe (1957)
Über das Weylsche Raumproblem.Journal für die reine und angewandte Mathematik (Crelles Journal), 1957
(1923)
Sur un théorème fondamental de M
(2005)
Correspondance Cartan – Weyl sur les connexions.
H. Weyl (1993)
Raum-Zeit-Materie: Vorlesungen Uber Allgemeine Relativitatstheorie
(1988)
Hermann Weyl and the nature of spacetime.
M. Blagojević, F. Hehl, T. Kibble (2013)
Gauge Theories Of Gravitation: A Reader With Commentaries
M. Friedman (1999)
Reconsidering Logical Positivism
W. Trageser (2016)
Einheitliche Feldtheorie von Gravitation und Elektrizität
Ulrich Schlienz (2020)
SymmetrieSchaltnetzteile und ihre Peripherie
F. Hehl (2012)
Gauge Theory of Gravity and Spacetime, 13
H. Weyl (2017)
Similarity and congruence: a chapter in the epistemology of science
(2016)
L’apparition de la notion d’espace généralisé dans les travaux d’Élie Cartan en 1922
A. Trautman (1973)
On the structure of the Einstein-Cartan equations, 12
E. Cartan
Sur les variétés à connexion affine et la théorie de la relativité généralisée. (première partie)Annales Scientifiques De L Ecole Normale Superieure, 40
(1952)
1922b. Space – Time – Matter. Translated from the 4th German edition by H. Brose. London: Methuen
E. Scholz (2004)
Hermann Weyl's Analysis of the “Problem of Space” and the Origin of Gauge StructuresScience in Context, 17
E. Scholz (2013)
The problem of space in the light of relativity: the views of H. Weyl and E. CartanarXiv: History and Overview
H. Weyl
Electron and Gravitation. 1. (In German)European Physical Journal A, 56
A. Einstein, W. Mayer (2006)
Einheitliche theorie von Gravitation und Elektrizität
J. Lense (1923)
Mathematische Analyse des RaumproblemsMonatshefte für Mathematik und Physik, 33
Friedrich, W. Hehl, P. Heyde, G., David, Kerlick (1976)
General Relativity with Spin and Torsion: Foundations and ProspectsReviews of Modern Physics, 48
(1924)
La théorie des groupes et les recherches récentes de géométrie différentielle” (Conférence faite au Congrès de Toronto)
(2015)
Continuous groups and geometry from Lie to Cartan
L. O'raifeartaigh (2020)
The Dawning of Gauge Theory
H. Zurich
Gravitation and Electricity
J. Lense (1922)
Über die Hypothesen, welche der Geometrie zu Grunde liegenMonatshefte für Mathematik und Physik, 32
R. Sharpe, S. Chern (2000)
Differential Geometry: Cartan's Generalization of Klein's Erlangen Program
H. Gehman, H. Weyl (1950)
Philosophy of Mathematics and Natural SciencePhilosophy and Phenomenological Research, 11
H. Weyl (1950)
A Remark on the Coupling of Gravitation and ElectronPhysical Review, 77
H. Weyl
Raum, Zeit, Materie
(1970)
Spin und Torsion in der allgemeinen Relativitätstheorie oder die Riemann-Cartansche Geometrie der Welt
W. Trageser (2016)
Gravitation und Elektrizität
(1988)
Exact Sciences and Their Philosophical Foundations. Exakte Wissenschaften und ihre philosophische Grundlegung
P. Wesson (1998)
Space-Time-Matter: Modern Kaluza-Klein Theory
H. Weyl (1929)
On the foundations of general infinitesimal geometryBulletin of the American Mathematical Society, 35
J. Bernard (2013)
L'idéalisme dans l'infinitésimal : Weyl et l'espace à l'époque de la relativité
(1991)
Hermann Weyl, Mathematics and Physics, 1900 – 1927.
W. Kopczyński (1998)
Gauge Theories of Gravitation
H. Weyl
Mathematische Analyse des Raumproblems: Vorlesungen, gehalten in Barcelona und Madrid
(1922)
Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion.
(2015)
Continuous groups and geometry from Lie to Cartan.” Preprint, to appear in J. Barrow-Green e.a. (eds.) Mathematics: Place, Production and Publication: 1730-1940
(2015)
La redécouverte des tapuscrits des confèrences d’Hermann Weyl à Barcelone.
(1922)
Das Raumproblem.” Jahresbericht DMV 31:205–221
(1968)
Gesammelte Abhandlungen, 4 vols
D. Sciama (1962)
On the analogy between charge and spin in general relativity
E. Scholz (2015)
Weyl's search for a difference between `physical' and `mathematical' automorphismsarXiv: History and Philosophy of Physics
J. Bernard (2015)
Les tapuscrits barcelonais sur le problème de l'espace de WeylRevue d Histoire des Mathematiques, 21
E. Scholz (2001)
Hermann Weyl's Raum-Zeit-Materie and a general introduction to his scientific workThe Mathematical Gazette, 85
E. Scholz (2014)
MOND-Like Acceleration in Integrable Weyl Geometric GravityFoundations of Physics, 46
H. Weyl, K. Chandrasekharan (1988)
Riemanns geometrische Ideen, ihre Auswirkung und ihre Verknüpfung mit der Gruppentheorie
“ Sur un théorème fondamental de M . H . Weyl . ”
[During his life Weyl approached the problem of space (PoS) from various sides. Two aspects stand out as permanent features of his different approaches: the unique determination of an affine connection (i.e., without torsion in the terminology of Cartan) and the question which type of group characteries physical space. The first feature came up in 1919 (commentaries to Riemann’s inaugural lecture) and played a crucial role in Weyl’s work on the PoS in the early 1920s. He defended the central role of affine connections even in the light of Cartan’s more general framework of connections with torsion. In later years, after the rise of the Dirac field, it could have become problematic, but Weyl saw the challenge posed to Einstein gravity by spin coupling primarily in the possibility to allow for non-metric affine connections. Only after Weyl’s death Cartan’s approach to infinitesimal homogeneity and torsion became revitalied in gravity theories.]
Published: Oct 10, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.