Access the full text.
Sign up today, get DeepDyve free for 14 days.
Vincent Ardourel (2012)
La physique dans la recherche en mathématiques constructives, 16
Erik Palmgren (1995)
A Constructive Approach to Nonstandard AnalysisAnn. Pure Appl. Log., 73
Bruno Dinis, Jaime Gaspar (2015)
Intuitionistic nonstandard bounded modified realisability and functional interpretationAnn. Pure Appl. Log., 169
Erik Palmgren (1993)
A note on Mathematics of infinityJournal of Symbolic Logic, 58
L. Brouwer (1954)
Points and SpacesCanadian Journal of Mathematics, 6
E. Nelson (1986)
Predicative Arithmetic. (Mn-32)
Erik Palmgren (1998)
Developments in Constructive Nonstandard AnalysisBulletin of Symbolic Logic, 4
V. Kanovei, M. Reeken (2004)
Nonstandard Analysis, Axiomatically
M. Atten (2018)
The Creating Subject, the Brouwer–Kripke Schema, and infinite proofsIndagationes Mathematicae
R. Tieszen (2000)
The philosophical Background of Weyl's Mathematical ConstructivismPhilosophia Mathematica, 8
M. Atten, D. Dalen, R. Tieszen (2001)
Brouwer and Weyl: The Phenomenology and Mathematics of the Intuitive ContinuumtPhilosophia Mathematica, 10
Sam Sanders (2017)
To be or not to be constructive, that is not the questionIndagationes Mathematicae, 29
E. Scholz (2001)
Weyls Infinitesimalgeometrie, 1917 – 1925
A. Kock (1981)
Synthetic Differential Geometry
H. Weyl (1922)
Die Einzigartigkeit der Pythagoreischen MaßbestimmungMathematische Zeitschrift, 12
C. Lobry, T. Sari (2008)
Non-standard analysis and representation of realityInternational Journal of Control, 81
von Heyting (1958)
BLICK VON DER INTUITIONISTISCHEN WARTEDialectica, 12
J. Harthong (1981)
Le moiréAdvances in Applied Mathematics, 2
G. Kreisel (1967)
Informal Rigour and Completeness ProofsStudies in logic and the foundations of mathematics, 47
B. Berg, E. Briseid, P. Safarik (2011)
A functional interpretation for nonstandard arithmeticAnn. Pure Appl. Log., 163
Fernando Ferreira, Jaime Gaspar (2015)
Nonstandardness and the bounded functional interpretationAnn. Pure Appl. Log., 166
M. Dummett (1975)
Wang's paradoxSynthese, 30
S. Buss (2006)
Chapter Eight. Nelson's Work on Logic and Foundations and Other Reflections on the Foundations of Mathematics
Edward Nelson (1988)
The syntax of nonstandard analysisAnn. Pure Appl. Log., 38
T. Skolem (1934)
Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich ZahlenvariablenFundamenta Mathematicae, 23
M. Atten, G. Sundholm (2015)
L.E.J. Brouwer's ‘Unreliability of the Logical Principles’: A New Translation, with an IntroductionHistory and Philosophy of Logic, 38
C. Wright (1975)
On the coherence of vague predicatesSynthese, 30
L. Brouwer (1929)
Mathematik, Wissenschaft und SpracheMonatshefte für Mathematik und Physik, 36
G. Sundholm, M. Atten (2008)
The proper explanation of intuitionistic logic: on Brouwer’s demonstration of the Bar Theorem
M. Atten (2014)
Essays on Gödel’s Reception of Leibniz, Husserl, and Brouwer
P. Mancosu, T. Ryckman (2002)
Mathematics and Phenomenology: The Correspondence between O. Becker and H. WeylPhilosophia Mathematica, 10
S. Wenmackers (2016)
Children of the Cosmos
Philip Ehrlich (2006)
The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of MagnitudesArchive for History of Exact Sciences, 60
Edward Nelson (1977)
Internal set theory: A new approach to nonstandard analysisBulletin of the American Mathematical Society, 83
C. Schmieden, D. Laugwitz (1958)
Eine Erweiterung der InfinitesimalrechnungMathematische Zeitschrift, 69
L. Brouwer (1927)
Über Definitionsbereiche von- FunktionenMathematische Annalen, 97
V Ardourel (2012)
183Philosophia Scientiae, 16
[As Weyl was interested in infinitesimal analysis and for some years embraced Brouwer’s intuitionism, which he continued to see as an ideal even after he had convinced himself that it is a practical necessity for science to go beyond intuitionistic mathematics, this note presents some remarks on infinitesimals from a Brouwerian perspective. After an introduction and a look at Robinson’s and Nelson’s approaches to classical nonstandard analysis, three desiderata for an intuitionistic construction of infinitesimals are extracted from Brouwer’s writings. These cannot be met, but in explicitly Brouwerian settings what might in different ways be called approximations to infinitesimals have been developed by early Brouwer, Vesley, and Reeb. I conclude that perhaps Reeb’s approach, with its Brouwerian motivation for accepting Nelson’s classical formalism, would have suited Weyl best.]
Published: Oct 10, 2019
Keywords: L.E.J. Brouwer; Constructivism; Infinitesimals; Intuitionism; Nonstandard analysis; Physics; G. Reeb; A. Robinson; R. Vesley; H. Weyl
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.