Access the full text.
Sign up today, get DeepDyve free for 14 days.
G. Teschl (2012)
Ordinary Differential Equations and Dynamical Systems
M. Escobedo, M. Herrero (1991)
Boundedness and blow up for a semilinear reaction-diffusion systemJournal of Differential Equations, 89
J. Villa‐Morales (2012)
Blow up of mild solutions of a system of partial differential equations with distinct fractional diffusionsarXiv: Classical Analysis and ODEs
J. López-Mimbela, Aroldo Pérez (2015)
Global and nonglobal solutions of a system of nonautonomous semilinear equations with ultracontractive Lévy generatorsJournal of Mathematical Analysis and Applications, 423
Aroldo Pérez (2015)
Global existence and blow-up for nonautonomous systems with non-local symmetric generators and Dirichlet conditionsDifferential Equations and Applications
Yoshitaka Uda (1995)
The critical exponent for a weakly coupled system of the generalized Fujita type reaction-diffusion equationsZeitschrift für angewandte Mathematik und Physik ZAMP, 46
Aroldo Pérez, J. Villa (2010)
Blow-up for a system with time-dependent generators
J. López-Mimbela, A. Wakolbinger (2000)
A probabilistic proof of non-explosion of a non-linear PDE systemJournal of Applied Probability, 37
M. Dozzi, E. Kolkovska, J. López-Mimbela (2013)
Exponential Functionals of Brownian Motion and Explosion Times of a System of Semilinear SPDEsStochastic Analysis and Applications, 31
H. Levine (1990)
The Role of Critical Exponents in Blowup TheoremsSIAM Rev., 32
J. López-Mimbela, Nicolas Privault (2011)
Large time behavior of reaction–diffusion equations with Bessel generatorsJournal of Mathematical Analysis and Applications, 383
K. Deng, H. Levine (2000)
The Role of Critical Exponents in Blow-Up Theorems: The SequelJournal of Mathematical Analysis and Applications, 243
M. Nagasawa, T. Sirao (1969)
PROBABILISTIC TREATMENT OF THE BLOWING UP OF SOLUTIONS FOR A NONLINEAR INTEGRAL EQUATIONTransactions of the American Mathematical Society, 139
[We give a criterion for blow up in finite time of the system of semilinear partial differential equations ∂ui(t,x)∂t=12∂2uit,x∂x2+φi′xφix∂uit,x∂x+uj1+βit,x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\frac {\partial u_{i}(t,x)}{\partial t}=\frac {1}{2}\frac {\partial ^{2}u_{i}\left (t,x\right )}{\partial x^{2}}+\frac {\varphi ^{\prime }_{i}\left (x\right )} {\varphi _{i}\left (x\right )}\frac {\partial u_{i}\left (t,x\right )}{\partial x}+u_{j}^{1+\beta _{i}}\left (t,x\right )$$ \end{document}, t > 0, x∈ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$x\in \mathbb {R}$$ \end{document}, with initial values of the form ui0,x=hix∕φix\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$u_{i}\left (0,x\right )={h_{i}\left (x\right )}/{\varphi _{i}\left (x\right )}$$ \end{document}, where 0<φi∈L2ℝ,dx∩C2ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$0<\varphi _{i}\in L^{2}\left (\mathbb {R},\mathrm {d} x\right )\cap C^{2}\left (\mathbb {R}\right )$$ \end{document}, 0≤hi∈L2ℝ,dx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$0\leq h_{i}\in L^{2}\left (\mathbb {R},\mathrm {d} x\right )$$ \end{document}, βi > 0 and i = 1, 2, j = 3 − i. Moreover, we find an upper bound T∗ for the blowup time of such system which depends both on the initial values f1, f2, and the measures μi(dx)=φi2(x)dx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mu _i(\mathrm {d} x)=\varphi _i^2(x)\,\mathrm {d} x$$ \end{document}, i = 1, 2.]
Published: Jun 27, 2018
Keywords: Semilinear system of PDEs; Local mild solution; Finite time blow up; Primary 60H30; 35K57; 35B35; 60J57
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.