Get 20M+ Full-Text Papers For Less Than $1.50/day. Subscribe now for You or Your Team.

Learn More →

Establishing the Order of Importance Factor Based on Optimization of Conditions in PAHs Biodegradation

Establishing the Order of Importance Factor Based on Optimization of Conditions in PAHs... Abstract In environmental study, optimization of different factors is crucial to obtain high removal of specific pollutants. The sequence of important factors that were considered in optimization studies is less concerned, and this part is crucial before proceeding to full-scale bioremediation study. This study focuses on bioremediation of polycyclic aromatic hydrocarbons (PAHs) contaminated soil with the potential bacteria, Corynebacterium urealyticum which is isolated from municipal sludge. The bacterial strain has evaluated the effectiveness of PAHs degradation at various factors on soil pH, soil temperature, initial PAHs concentration, initial bacteria number, and heavy metals concentration. The optimum condition for phenanthrene biodegradation was pH 7, 30 °C, 500 mg/kg of phenanthrene concentration, 109 cells/g soil, and without the addition of Zn. In establishing the ranking, we attempt to use a simple method based on the analysis of p values. Based on the analysis of degradation rates, the initial phenanthrene concentration shows the lowest p value, which means that it shows the highest ranking; the most significant factor to achieve highest degradation. In vice versa, the soil pH shows the highest ranking based on the analysis of bacteria growth rates, which is a very limited study that focuses on growth rates in the optimization study. The establishment of these rankings may reduce time, energy and cost in pilot or field study and at the same time achieve highest degradation in bioremediation work. Thus, it is highly recommended to develop the ranking before proceeding to design work in pilot and field study. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Polycyclic Aromatic Compounds Taylor & Francis

Establishing the Order of Importance Factor Based on Optimization of Conditions in PAHs Biodegradation

Establishing the Order of Importance Factor Based on Optimization of Conditions in PAHs Biodegradation

Polycyclic Aromatic Compounds , Volume 42 (5): 15 – May 28, 2022

Abstract

Abstract In environmental study, optimization of different factors is crucial to obtain high removal of specific pollutants. The sequence of important factors that were considered in optimization studies is less concerned, and this part is crucial before proceeding to full-scale bioremediation study. This study focuses on bioremediation of polycyclic aromatic hydrocarbons (PAHs) contaminated soil with the potential bacteria, Corynebacterium urealyticum which is isolated from municipal sludge. The bacterial strain has evaluated the effectiveness of PAHs degradation at various factors on soil pH, soil temperature, initial PAHs concentration, initial bacteria number, and heavy metals concentration. The optimum condition for phenanthrene biodegradation was pH 7, 30 °C, 500 mg/kg of phenanthrene concentration, 109 cells/g soil, and without the addition of Zn. In establishing the ranking, we attempt to use a simple method based on the analysis of p values. Based on the analysis of degradation rates, the initial phenanthrene concentration shows the lowest p value, which means that it shows the highest ranking; the most significant factor to achieve highest degradation. In vice versa, the soil pH shows the highest ranking based on the analysis of bacteria growth rates, which is a very limited study that focuses on growth rates in the optimization study. The establishment of these rankings may reduce time, energy and cost in pilot or field study and at the same time achieve highest degradation in bioremediation work. Thus, it is highly recommended to develop the ranking before proceeding to design work in pilot and field study.

Loading next page...
 
/lp/taylor-francis/establishing-the-order-of-importance-factor-based-on-optimization-of-0bLKbZGSh6

References (44)

Publisher
Taylor & Francis
Copyright
© 2020 Taylor & Francis Group, LLC
ISSN
1563-5333
eISSN
1040-6638
DOI
10.1080/10406638.2020.1833049
Publisher site
See Article on Publisher Site

Abstract

Abstract In environmental study, optimization of different factors is crucial to obtain high removal of specific pollutants. The sequence of important factors that were considered in optimization studies is less concerned, and this part is crucial before proceeding to full-scale bioremediation study. This study focuses on bioremediation of polycyclic aromatic hydrocarbons (PAHs) contaminated soil with the potential bacteria, Corynebacterium urealyticum which is isolated from municipal sludge. The bacterial strain has evaluated the effectiveness of PAHs degradation at various factors on soil pH, soil temperature, initial PAHs concentration, initial bacteria number, and heavy metals concentration. The optimum condition for phenanthrene biodegradation was pH 7, 30 °C, 500 mg/kg of phenanthrene concentration, 109 cells/g soil, and without the addition of Zn. In establishing the ranking, we attempt to use a simple method based on the analysis of p values. Based on the analysis of degradation rates, the initial phenanthrene concentration shows the lowest p value, which means that it shows the highest ranking; the most significant factor to achieve highest degradation. In vice versa, the soil pH shows the highest ranking based on the analysis of bacteria growth rates, which is a very limited study that focuses on growth rates in the optimization study. The establishment of these rankings may reduce time, energy and cost in pilot or field study and at the same time achieve highest degradation in bioremediation work. Thus, it is highly recommended to develop the ranking before proceeding to design work in pilot and field study.

Journal

Polycyclic Aromatic CompoundsTaylor & Francis

Published: May 28, 2022

Keywords: Bioremediation; optimization study; organic contaminants; soils

There are no references for this article.