Access the full text.
Sign up today, get DeepDyve free for 14 days.
Simon Duane, A. Kennedy, B. Pendleton, D. Roweth (1987)
Hybrid Monte Carlo, 4
G. Roberts, J. Rosenthal (2009)
Examples of Adaptive MCMCJournal of Computational and Graphical Statistics, 18
B. Alder, T. Wainwright (1959)
Studies in Molecular Dynamics. I. General MethodJournal of Chemical Physics, 31
Jun Liu (2001)
Monte Carlo strategies in scientific computing
M. Trias, A. Vecchio, J. Veitch (2009)
Delayed rejection schemes for efficient Markov-Chain Monte-Carlo sampling of multimodal distributionsarXiv: Methodology
Ruth King, S. Brooks (2004)
A Classical Study of Catch-Effort Models for Hector's DolphinsJournal of the American Statistical Association, 99
L. Tierney, A. Mira (1999)
Some adaptive monte carlo methods for Bayesian inference.Statistics in medicine, 18 17-18
W. Gilks, G. Roberts, S. Sahu (1998)
Adaptive Markov Chain Monte Carlo through RegenerationJournal of the American Statistical Association, 93
M. Miller, Anuj Srivastava, U. Grenander (1995)
Conditional-mean estimation via jump-diffusion processes in multiple target tracking/recognitionIEEE Trans. Signal Process., 43
S. Godsill (2001)
On the Relationship Between Markov chain Monte Carlo Methods for Model UncertaintyJournal of Computational and Graphical Statistics, 10
Robert Kass, A. Raftery (1995)
Bayes factors
N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller (1953)
Equation of state calculations by fast computing machinesJournal of Chemical Physics, 21
F. Bartolucci, L. Scaccia, A. Mira (2006)
Efficient Bayes factor estimation from the reversible jump outputBiometrika, 93
A. Kennedy, B. Pendleton (1991)
Acceptances and autocorrelations in hybrid Monte Carlo, 20
Jesper Møller, G. Nicholls (1999)
Perfect simulation for sample-based inference
L. Tierney (1998)
A note on Metropolis-Hastings kernels for general state spacesAnnals of Applied Probability, 8
J. Cornuet, Filipe Santos, M. Beaumont, C. Robert, J. Marin, D. Balding, T. Guillemaud, A. Estoup (2008)
Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computationBioinformatics, 24
C. Rasmussen, J. Bernardo, M. Bayarri, J. Berger, A. Dawid, D. Heckerman, Adrian Smith, M. West (2003)
Gaussian Processes to Speed up Hybrid Monte Carlo for Expensive Bayesian Integrals
S. Brooks, N. Friel, Ruth King (2003)
Classical model selection via simulated annealingJournal of the Royal Statistical Society: Series B (Statistical Methodology), 65
J. Keith, Dirk Kroese, D. Bryant (2004)
A Generalized Markov SamplerMethodology And Computing In Applied Probability, 6
S. Caracciolo, A. Pelissetto, A. Sokal (1993)
A general limitation on Monte Carlo algorithms of the Metropolis type.Physical review letters, 72 2
Peter Green (2001)
A primer in Markov Chain Monte CarloInternational Journal of Online Engineering
Zhaohui Qin, Jun Liu (2001)
Multipoint metropolis method with application to hybrid Monte CarloJournal of Computational Physics, 172
P. Green, S. Godsill, J. Heikkinen (2000)
Trans-dimensional Markov chain Monte Carlo
P. Dellaportas, J. Forster, I. Ntzoufras (2002)
On Bayesian model and variable selection using MCMCStatistics and Computing, 12
J. Symanzik (2005)
Statistical Analysis of Spatial Point PatternsTechnometrics, 47
F. Liang, W. Wong (2001)
Real-Parameter Evolutionary Monte Carlo With Applications to Bayesian Mixture ModelsJournal of the American Statistical Association, 96
Zhihui Liu (2010)
BAYESIAN MIXTURE· MODELS
C. Geyer, E. Thompson (1995)
Annealing Markov chain Monte Carlo with applications to ancestral inferenceJournal of the American Statistical Association, 90
G. Celeux, M. Hurn, C. Robert (2000)
Computational and Inferential Difficulties with Mixture Posterior DistributionsJournal of the American Statistical Association, 95
Yanan Fan, G. Peters, S. Sisson (2009)
Automating and evaluating reversible jump MCMC proposal distributionsStatistics and Computing, 19
S. Kirkpatrick (1984)
Optimization by simulated annealing: Quantitative studiesJournal of Statistical Physics, 34
Kiam Choo (2000)
Learning hyperparameters for neural network models using Hamiltonian dynamics
S. Sisson, M. Hurn (2004)
Bayesian Point Estimation of Quantitative Trait LociBiometrics, 60
Radford Neal (1992)
An improved acceptance procedure for the hybrid Monte Carlo algorithmJournal of Computational Physics, 111
(1988)
Bounds on the L 2 spectrum for Markov chains and Markov processes
Carl Rasmussen, Christopher Williams (2005)
Gaussian processes for machine learning
B. Carlin, S. Chib (1995)
Bayesian Model Choice Via Markov Chain Monte Carlo MethodsJournal of the royal statistical society series b-methodological, 57
J. Berger, L. Pericchi (2004)
Training samples in objective Bayesian model selectionAnnals of Statistics, 32
C. Andrieu, Nando Freitas, A. Doucet (2000)
Reversible Jump MCMC Simulated Annealing for Neural Networks
R. West (2012)
Generalised Additive Models
S. Tavaré, D. Balding, R. Griffiths, P. Donnelly (1997)
Inferring coalescence times from DNA sequence data.Genetics, 145 2
A. Gelman, D. Rubin (1992)
Inference from Iterative Simulation Using Multiple SequencesStatistical Science, 7
Paul Mackenze (1989)
An Improved Hybrid Monte Carlo MethodPhysics Letters B, 226
C. Robert, G. Casella, Olivier Capp´e, David Spiegelhalter, Alan Gelfand, Peter Green, Jun Liu, Sharon McGrayne, Peter M¨uller, Gareth Roberts (2008)
A History of Markov Chain Monte Carlo–Subjective Recollections from Incomplete Data–
J. Bernardo, J. Berger, A. Dawid, M. Clyde (2007)
Bayesian Model Averaging and Model Search Strategies
U. Grenander, M. Miller (1994)
REPRESENTATIONS OF KNOWLEDGE IN COMPLEX SYSTEMSJournal of the royal statistical society series b-methodological, 56
(2003)
A new approach for estimating the Bayes factor
X. Meng, W. Wong (1996)
SIMULATING RATIOS OF NORMALIZING CONSTANTS VIA A SIMPLE IDENTITY: A THEORETICAL EXPLORATION
Anna Walsh (1965)
STUDIES IN MOLECULAR DYNAMICS
M. Smith, R. Kohn (1996)
Nonparametric regression using Bayesian variable selectionJournal of Econometrics, 75
O. Cappé, C. Robert, T. Rydén (2001)
Reversible Jump MCMC Converging to Birth-and-Death MCMC and More General Continuous Time Samplers
S. Sisson, Y. Fan (2009)
Towards automating model selection for a mark–recapture–recovery analysisJournal of the Royal Statistical Society: Series C (Applied Statistics), 58
P. Rujan (1997)
Playing Billiards in Version SpaceNeural Computation, 9
M. Cowles, B. Carlin (1996)
Markov Chain Monte Carlo conver-gence diagnostics: a comparative review
S. Sisson (2004)
Trans-dimensional Markov chains : A decade of progress and future perspectives
Edward George, R. McCulloch (1993)
Variable selection via Gibbs samplingJournal of the American Statistical Association, 88
C. Geyer (1991)
Markov Chain Monte Carlo Maximum Likelihood
A. Kennedy (1990)
The theory of hybrid stochastic algorithms
V. Arnold (1974)
Mathematical Methods of Classical Mechanics
David Earl, M. Deem (2005)
Parallel tempering: theory, applications, and new perspectives.Physical chemistry chemical physics : PCCP, 7 23
(1999)
MCMC convergence diagnostics
A. Jasra, D. Stephens, C. Holmes (2007)
Population-Based Reversible Jump Markov Chain Monte CarloBiometrika, 94
Mikkel Schmidt (2009)
Function factorization using warped Gaussian processes
S. Brooks, Paolo Giudici, G. Roberts (2003)
Efficient construction of reversible jump Markov chain Monte Carlo proposal distributionsJournal of the Royal Statistical Society: Series B (Statistical Methodology), 65
A. Kennedy, B. Pendleton (2000)
Cost of the Generalised Hybrid Monte Carlo Algorithm for Free Field TheoryNuclear Physics, 607
C. Geyer (2000)
On Non-reversible Markov Chains
Radford Neal (2011)
Probabilistic Inference Using Markov Chain Monte Carlo Methods
H. Chipman, E. George, R. McCulloch (2001)
The Practical Implementation of Bayesian Model Selection, 38
P. Rossky, J. Doll, H. Friedman (1978)
Brownian dynamics as smart Monte Carlo simulationJournal of Chemical Physics, 69
C. Andrieu, P. Djurić, A. Doucet (2001)
Model selection by MCMC computationSignal Process., 81
F. Al-Awadhi, M. Hurn, C. Jennison (2004)
Improving the acceptance rate of reversible jump MCMC proposalsStatistics & Probability Letters, 69
(2005)
MCMC methods and the label switching problem
M. Girolami, B. Calderhead (2011)
Riemann manifold Langevin and Hamiltonian Monte Carlo methodsJournal of the Royal Statistical Society: Series B (Statistical Methodology), 73
Radford Neal (2005)
The Short-Cut Metropolis MethodarXiv: Statistics Theory
M. Stephens (2000)
Dealing with label switching in mixture modelsJournal of the Royal Statistical Society: Series B (Statistical Methodology), 62
(1994)
Contribution to the discussion of a paper by Grenander and Miller
M. Girolami, B. Calderhead, S. Chin (2009)
Riemannian Manifold Hamiltonian Monte CarloarXiv: Computation
Radford Neal (1998)
Annealed importance samplingStatistics and Computing, 11
D. Frenkel, B. Smit (1996)
Understanding molecular simulation: from algorithms to applications, 1
(1977)
Modelling spatial patterns (with discussion)
Stephen Brooks (1998)
Markov chain Monte Carlo method and its applicationThe Statistician, 47
W. Gilks, S. Richardson, D. Spiegelhalter (1995)
Bayesian model comparison via jump diffusions
M. Hurn, A. Justel, C. Robert (2003)
Estimating Mixtures of RegressionsJournal of Computational and Graphical Statistics, 12
S. Frühwirth-Schnatter (2001)
Markov chain Monte Carlo Estimation of Classical and Dynamic Switching and Mixture ModelsJournal of the American Statistical Association, 96
Charles Bennett (1975)
Mass tensor molecular dynamicsJournal of Computational Physics, 19
H. Ishwaran (1999)
Applications of Hybrid Monte Carlo to Bayesian Generalized Linear Models: Quasicomplete Separation and Neural NetworksJournal of Computational and Graphical Statistics, 8
S. Walker (2009)
A Gibbs Sampling Alternative to Reversible Jump MCMCarXiv: Computation
D. Denison, B. Mallick, Adrian Smith (1998)
Automatic Bayesian curve fittingJournal of the Royal Statistical Society: Series B (Statistical Methodology), 60
C. Preston (1975)
Spatial birth and death processesAdvances in Applied Probability, 7
James Flegal, M. Haran, Galin Jones (2007)
Markov chain Monte Carlo: Can we trust the third significant figure?Statistical Science, 23
I. Ntzoufras, P. Dellaportas, J. Forster (2003)
Bayesian variable and link determination for generalised linear modelsJournal of Statistical Planning and Inference, 111
S. Sisson, Yanan Fan (2007)
A distance-based diagnostic for trans-dimensional Markov chainsStatistics and Computing, 17
P. Moral, A. Doucet (2002)
Sequential Monte Carlo samplersJournal of the Royal Statistical Society: Series B (Statistical Methodology), 68
J. Propp, D. Wilson (1996)
Exact sampling with coupled Markov chains and applications to statistical mechanicsRandom Struct. Algorithms, 9
P. Dellaportas, I. Papageorgiou (2006)
Multivariate mixtures of normals with unknown number of componentsStatistics and Computing, 16
Yanan Fan, S. Brooks (2000)
Bayesian modelling of prehistoric corbelled domesThe Statistician, 49
G. Roberts, C. Robert, A. Frigessi (2003)
Linking theory and practice of MCMC.
C. Robert, J. Cornuet, J. Marin, N. Pillai (2011)
Lack of confidence in ABC model choicearXiv: Methodology
BY Peskun, P. Peskun (1973)
Optimum Monte-Carlo sampling using Markov chainsBiometrika, 60
C. Robert, J. Cornuet, J. Marin, N. Pillai (2011)
Lack of confidence in approximate Bayesian computation model choiceProceedings of the National Academy of Sciences, 108
Radford Neal (1995)
Bayesian learning for neural networks
M. Stephens (2000)
Bayesian analysis of mixture models with an unknown number of components- an alternative to reversible jump methodsAnnals of Statistics, 28
M. Tadesse, Naijun Sha, M. Vannucci (2005)
Bayesian Variable Selection in Clustering High-Dimensional DataJournal of the American Statistical Association, 100
G. Roberts, A. Gelman, W. Gilks (1997)
Weak convergence and optimal scaling of random walk Metropolis algorithmsAnnals of Applied Probability, 7
B. Leimkuhler, S. Reich (2005)
Simulating Hamiltonian Dynamics: Acknowledgements
J. Berger, L. Pericchi (2001)
Objective Bayesian Methods for Model Selection: Introduction and Comparison
Ilaria Dimatteo, C. Genovese, R. Kass (2001)
Bayesian curve-fitting with free-knot splinesBiometrika, 88
A. George, Kerrie Mengersen, Gabrielle Davis (1999)
A Bayesian Approach to Ordering Gene MarkersBiometrics, 55
M. Creutz (1988)
Global Monte Carlo algorithms for many-fermion systems.Physical review. D, Particles and fields, 38 4
Sourendu Gupta, A. Irbäc, F. Karsch, B. Petersson (1990)
The acceptance probability in the hybrid Monte Carlo methodPhysics Letters B, 242
A. Brockwell, J. Kadane (2005)
Identification of Regeneration Times in MCMC Simulation, With Application to Adaptive SchemesJournal of Computational and Graphical Statistics, 14
S. Brooks, Yanan Fan, J. Rosenthal (2006)
Perfect Forward Simulation via Simulated TemperingCommunications in Statistics - Simulation and Computation, 35
Lawrence Laboratory, Lindsay Schachinger (1994)
Summary of the
R. Gramacy, R. Samworth, Ruth King (2007)
Importance temperingStatistics and Computing, 20
M. Creutz, M. Creutz, A. Gocksch (1989)
Higher-order hybrid Monte Carlo algorithms.Physical review letters, 63 1
P. Diaconis, Susan Holmes, Radford Neal (2000)
ANALYSIS OF A NONREVERSIBLE MARKOV CHAIN SAMPLERAnnals of Applied Probability, 10
Jun Liu, F. Liang, W. Wong (2001)
A Theory for Dynamic Weighting in Monte Carlo ComputationJournal of the American Statistical Association, 96
G. Roberts, J. Rosenthal (1998)
Optimal scaling of discrete approximations to Langevin diffusionsJournal of the Royal Statistical Society: Series B (Statistical Methodology), 60
J. Vermaak, C. Andrieu, A. Doucet, S. Godsill (2004)
Reversible Jump Markov Chain Monte Carlo Strategies for Bayesian Model Selection in Autoregressive ProcessesJournal of Time Series Analysis, 25
A. Horowitz (1991)
A generalized guided Monte Carlo algorithmPhysics Letters B, 268
W. Kendall, Jesper Møller (1999)
Perfect Metropolis-Hastings simulation of locally stable point processes
S. Godsill (2003)
Discussion of `Trans-dimensional Markov chain Monte Carlo'
J. Ghosh, T. Samanta (2001)
Model selection - An overview
R. Ehlers, S. Brooks (2008)
Adaptive Proposal Construction for Reversible Jump MCMCScandinavian Journal of Statistics, 35
G. Roberts, R. Tweedie (1996)
Exponential convergence of Langevin distributions and their discrete approximationsBernoulli, 2
S. Brooks, Paolo Giudici, A. Philippe (2003)
Nonparametric Convergence Assessment for MCMC Model SelectionJournal of Computational and Graphical Statistics, 12
Radford Neal (2004)
Improving Asymptotic Variance of MCMC Estimators: Non-reversible Chains are BetterarXiv: Probability
P. Green, A. Mira (2001)
Delayed rejection in reversible jump Metropolis–HastingsBiometrika, 88
M. Barbieri, U. Di, Roma, La Sapienza, James Berger (2002)
Optimal Predictive Model Selection
Michail Papathomas, P. Dellaportas, V. Vasdekis (2009)
A general proposal construction for reversible jump MCMC
E. Marinari, G. Parisi (1992)
Simulated tempering: a new Monte Carlo schemeEPL, 19
A. Jasra, A. Doucet, D. Stephens, C. Holmes (2008)
Interacting sequential Monte Carlo samplers for trans-dimensional simulationComput. Stat. Data Anal., 52
C. Geyer, J. Møller (1994)
Simulation Procedures and Likelihood Inference for Spatial Point ProcessesScandinavian Journal of Statistics, 21
D. Nott, D. Leonte (2004)
Sampling Schemes for Bayesian Variable Selection in Generalized Linear ModelsJournal of Computational and Graphical Statistics, 13
D. Nott, P. Green (2004)
Bayesian Variable Selection and the Swendsen-Wang AlgorithmJournal of Computational and Graphical Statistics, 13
Radford Neal (1996)
Sampling from multimodal distributions using tempered transitionsStatistics and Computing, 6
R. McLachlan, Pau Atela (1992)
The accuracy of symplectic integratorsNonlinearity, 5
W. Hastings (1970)
Monte Carlo Sampling Methods Using Markov Chains and Their ApplicationsBiometrika, 57
Cong Han, B. Carlin (2000)
MCMC Methods for Computing Bayes Factors: A Comparative Review
(2000)
MCMC convergence assessment via two-way ANOVA
J. Izaguirre, Scott Hampton (2004)
Shadow hybrid Monte Carlo: an efficient propagator in phase space of macromoleculesJournal of Computational Physics, 200
P. Green (1995)
Reversible jump Markov chain Monte Carlo computation and Bayesian model determinationBiometrika, 82
C. Andrieu, John Thoms (2008)
A tutorial on adaptive MCMCStatistics and Computing, 18
(2005)
Population-based reversible jump Markov chain
H. Haario, E. Saksman, J. Tamminen (2001)
An adaptive Metropolis algorithmBernoulli, 7
5 and 1/4, respectively, they conclude that B gives a further reading smaller p-value for the test of whether the pill has Berger, J. 2003. Could Fisher, Jeffreys, and Neyman no eff ect. Because 20/10 = 2 and 5/(1/2) = 10. Hence have agreed on testing? Statistical Science 18 :1–12. demonstrating how p-values can go wrong . er Th e are (with discussion) two misleading issues. First, the diets are compared Denis, D. 2004. The modern hypothesis testing hybrid: in terms of mean eff ects, not observations, so outside R.A. Fisher’s fading influence. J. Soc. Française Stat- statistics. Second, running a t-test of nullity of the mean ist. 145:5–26. (with discussion) is not meaningful in this case. What imports is whether one diet is more effi cient than the other. Assuming a Hoenig, J., and D. Heisey. 2001. The abuse of power. normal distribution, we have: The American Statistician 55:19–24. Jeffreys, H. 1939. Theory of probability. Oxford: The PA () >= BP(/ X >−15 25+= 11 /) 62 Φ(.996). = 0 999, Clarendon Press. Mayo, D., and A. Spanos. 2010. Error and inference: which sounds like a rather good argument in favor of Recent exchanges on experimental reasoning, reli-
Chance – Taylor & Francis
Published: Feb 29, 2012
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.