Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Low temperature destruction of gas-phase per- and polyfluoroalkyl substances using an alumina-based catalyst

Low temperature destruction of gas-phase per- and polyfluoroalkyl substances using an... Per- and polyfluoroalkyl substances (PFAS) pose a major health and environmental problem. Methods are needed to ensure that PFAS are not released into the environment during their use or disposal. Alumina-based catalysts have been used for the abatement of small perfluorocarbons, e.g. tetrafluoromethane and perfluoropropane, emitted during the silicon etching process. Here, an alumina-based catalyst was tested to determine if these catalysts may facilitate the destruction of gas-phase PFAS. The catalyst was challenged with two nonionic surfactants with eight fluorinated carbons, 8:2 fluorotelomer alcohol and N-Ethyl-N-(2-hydroxyethyl)perfluorooctylsulfonamide. The catalyst helped decrease the temperatures needed for the destruction of the parent PFAS relative to a thermal-only treatment. Temperatures of 200°C were sufficient to destroy the parent PFAS using the catalyst, although a significant number of fluorinated products of incomplete destruction (PIDs) were observed. The PIDs were no longer observed by about 500°C with catalyst treatment. Alumina-based catalysts are a promising PFAS pollution control technology that could eliminate both perfluorocarbons and longer chain PFAS from gas streams. Implications: The release of per- and polyfluoroalkyl substances (PFAS) into the atmosphere can cause problems for human health and the environment. It is critical to reduce and eliminate PFAS emissions from potential sources, such as manufacturers, destruction technologies, and fluoropolymer processing and application sites. Here, an alumina-based catalyst was used to eliminate the emissions of two gas-phase PFAS with eight fully fluorinated carbons. No PFAS were observed in the emissions when the catalyst was at 500°C, lowering the energy requirements for PFAS destruction. This shows that alumina-based catalysts are a promising area for research for PFAS pollution controls and the elimination of PFAS emissions into the atmosphere. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Air & Waste Management Association Taylor & Francis

Low temperature destruction of gas-phase per- and polyfluoroalkyl substances using an alumina-based catalyst

8 pages

Loading next page...
 
/lp/taylor-francis/low-temperature-destruction-of-gas-phase-per-and-polyfluoroalkyl-lW3D0ImFXE

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Taylor & Francis
Copyright
This work was authored as part of the Contributor’s official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law.
ISSN
2162-2906
eISSN
1096-2247
DOI
10.1080/10962247.2023.2210103
Publisher site
See Article on Publisher Site

Abstract

Per- and polyfluoroalkyl substances (PFAS) pose a major health and environmental problem. Methods are needed to ensure that PFAS are not released into the environment during their use or disposal. Alumina-based catalysts have been used for the abatement of small perfluorocarbons, e.g. tetrafluoromethane and perfluoropropane, emitted during the silicon etching process. Here, an alumina-based catalyst was tested to determine if these catalysts may facilitate the destruction of gas-phase PFAS. The catalyst was challenged with two nonionic surfactants with eight fluorinated carbons, 8:2 fluorotelomer alcohol and N-Ethyl-N-(2-hydroxyethyl)perfluorooctylsulfonamide. The catalyst helped decrease the temperatures needed for the destruction of the parent PFAS relative to a thermal-only treatment. Temperatures of 200°C were sufficient to destroy the parent PFAS using the catalyst, although a significant number of fluorinated products of incomplete destruction (PIDs) were observed. The PIDs were no longer observed by about 500°C with catalyst treatment. Alumina-based catalysts are a promising PFAS pollution control technology that could eliminate both perfluorocarbons and longer chain PFAS from gas streams. Implications: The release of per- and polyfluoroalkyl substances (PFAS) into the atmosphere can cause problems for human health and the environment. It is critical to reduce and eliminate PFAS emissions from potential sources, such as manufacturers, destruction technologies, and fluoropolymer processing and application sites. Here, an alumina-based catalyst was used to eliminate the emissions of two gas-phase PFAS with eight fully fluorinated carbons. No PFAS were observed in the emissions when the catalyst was at 500°C, lowering the energy requirements for PFAS destruction. This shows that alumina-based catalysts are a promising area for research for PFAS pollution controls and the elimination of PFAS emissions into the atmosphere.

Journal

Journal of the Air & Waste Management AssociationTaylor & Francis

Published: Jul 3, 2023

References