Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A self‐adaptive intelligence gray prediction model with the optimal fractional order accumulating operator and its application

A self‐adaptive intelligence gray prediction model with the optimal fractional order accumulating... The self‐adaptive intelligence gray predictive model (SAIGM) has an alterable‐flexible model structure, and it can build a dynamic structure to fit different external environments by adjusting the parameter values of SAIGM. However, the order number of the raw SAIGM model is not optimal, which is an integer. For this, a new SAIGM model with the fractional order accumulating operator (SAIGM_FO) was proposed in this paper. Specifically, the final restored expression of SAIGM_FO was deduced in detail, and the parameter estimation method of SAIGM_FO was studied. After that, the Particle Swarm Optimization algorithm was used to optimize the order number of SAIGM_FO, and some steps were provided. Finally, the SAIGM_FO model was applied to simulate China's electricity consumption from 2001 to 2008 and forecast it during 2009 to 2015, and the mean relative simulation and prediction percentage errors of the new model were only 0.860% and 2.661%, in comparison with the ones obtained from the raw SAIGM model, the GM(1, 1) model with the optimal fractional order accumulating operator and the GM(1, 1) model, which were (1.201%, 5.321%), (1.356%, 3.324%), and (2.013%, 23.944%), respectively. The findings showed both the simulation and the prediction performance of the proposed SAIGM_FO model were the best among the 4 models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mathematical Methods in the Applied Sciences Wiley

A self‐adaptive intelligence gray prediction model with the optimal fractional order accumulating operator and its application

Loading next page...
 
/lp/wiley/a-self-adaptive-intelligence-gray-prediction-model-with-the-optimal-b9Vtvazzio

References (32)

Publisher
Wiley
Copyright
Copyright © 2017 John Wiley & Sons, Ltd.
ISSN
0170-4214
eISSN
1099-1476
DOI
10.1002/mma.4565
Publisher site
See Article on Publisher Site

Abstract

The self‐adaptive intelligence gray predictive model (SAIGM) has an alterable‐flexible model structure, and it can build a dynamic structure to fit different external environments by adjusting the parameter values of SAIGM. However, the order number of the raw SAIGM model is not optimal, which is an integer. For this, a new SAIGM model with the fractional order accumulating operator (SAIGM_FO) was proposed in this paper. Specifically, the final restored expression of SAIGM_FO was deduced in detail, and the parameter estimation method of SAIGM_FO was studied. After that, the Particle Swarm Optimization algorithm was used to optimize the order number of SAIGM_FO, and some steps were provided. Finally, the SAIGM_FO model was applied to simulate China's electricity consumption from 2001 to 2008 and forecast it during 2009 to 2015, and the mean relative simulation and prediction percentage errors of the new model were only 0.860% and 2.661%, in comparison with the ones obtained from the raw SAIGM model, the GM(1, 1) model with the optimal fractional order accumulating operator and the GM(1, 1) model, which were (1.201%, 5.321%), (1.356%, 3.324%), and (2.013%, 23.944%), respectively. The findings showed both the simulation and the prediction performance of the proposed SAIGM_FO model were the best among the 4 models.

Journal

Mathematical Methods in the Applied SciencesWiley

Published: Dec 1, 2017

Keywords: ; ; ;

There are no references for this article.