Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Glycoproteomic strategies: From discovery to clinical application of cancer carbohydrate biomarkers

Glycoproteomic strategies: From discovery to clinical application of cancer carbohydrate biomarkers Carbohydrate antigens are the most frequently and traditionally used biomarkers for cancer, such as CA19–9, CA125, DUPAN‐II, AFP‐L3, and many others. The diagnostic potential of them was simply based on the cancer‐specific alterations of glycan structures on particular glycoproteins in serum/plasma. In spite of the facts that glycosylation disorders are feasible for cancer biomarkers and glycomic analysis technologies to explore them have been rapidly developed, it remains difficult to sensitively screen glycan structure changes on cancer‐associated glycoproteins from clinical specimens. Moreover, a lot of additional issues should be appropriately addressed for the clinical application of newly identified glycosylation biomarkers, including analytical throughput, quantitative confirmation of structural changes, and biological explanation for the alterations. In the last decade, significant improvement of mass spectrometric techniques is being made in the aspects of both hardware spec and preanalytical purification procedures for glycoprotein analysis. Here we review potential approaches to perform comprehensive analysis of glycoproteomic biomarker screening from serum/plasma and to realize high‐throughput validation of site‐specific oligosaccharide variations. The power and problems of mass spectrometric applications on the clinical use of carbohydrate biomarkers are also discussed in this review. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proteomics - Clinical Applications Wiley

Glycoproteomic strategies: From discovery to clinical application of cancer carbohydrate biomarkers

Proteomics - Clinical Applications , Volume 7 (9-10) – Oct 1, 2013

Loading next page...
 
/lp/wiley/glycoproteomic-strategies-from-discovery-to-clinical-application-of-gbGleS3Mxc

References (106)

Publisher
Wiley
Copyright
"© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim"
ISSN
1862-8346
eISSN
1862-8354
DOI
10.1002/prca.201200123
pmid
23640819
Publisher site
See Article on Publisher Site

Abstract

Carbohydrate antigens are the most frequently and traditionally used biomarkers for cancer, such as CA19–9, CA125, DUPAN‐II, AFP‐L3, and many others. The diagnostic potential of them was simply based on the cancer‐specific alterations of glycan structures on particular glycoproteins in serum/plasma. In spite of the facts that glycosylation disorders are feasible for cancer biomarkers and glycomic analysis technologies to explore them have been rapidly developed, it remains difficult to sensitively screen glycan structure changes on cancer‐associated glycoproteins from clinical specimens. Moreover, a lot of additional issues should be appropriately addressed for the clinical application of newly identified glycosylation biomarkers, including analytical throughput, quantitative confirmation of structural changes, and biological explanation for the alterations. In the last decade, significant improvement of mass spectrometric techniques is being made in the aspects of both hardware spec and preanalytical purification procedures for glycoprotein analysis. Here we review potential approaches to perform comprehensive analysis of glycoproteomic biomarker screening from serum/plasma and to realize high‐throughput validation of site‐specific oligosaccharide variations. The power and problems of mass spectrometric applications on the clinical use of carbohydrate biomarkers are also discussed in this review.

Journal

Proteomics - Clinical ApplicationsWiley

Published: Oct 1, 2013

Keywords: ; ; ; ;

There are no references for this article.