Access the full text.
Sign up today, get DeepDyve free for 14 days.
O. Chapelle, Lihong Li (2011)
An Empirical Evaluation of Thompson Sampling
E. Brochu, Vlad Cora, Nando Freitas (2010)
A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement LearningArXiv, abs/1012.2599
Ali Hebbal, Loïc Brevault, M. Balesdent, E. Talbi, N. Melab (2019)
Bayesian optimization using deep Gaussian processes with applications to aerospace system designOptimization and Engineering, 22
R. Garnett, Michael Osborne, Philipp Hennig (2013)
Active Learning of Linear Embeddings for Gaussian Processes
Michalis Titsias (2009)
Variational Learning of Inducing Variables in Sparse Gaussian Processes
Jonas Weber, Michael Hartisch, Alexander Herbst, Ulf Lorenz (2020)
Towards an algorithmic synthesis of thermofluid systemsOptimization and Engineering, 22
M. Maier, Ruben Zwicker, Mansur Akbari, A. Rupenyan, K. Wegener (2019)
Bayesian optimization for autonomous process set-up in turningCIRP Journal of Manufacturing Science and Technology
Tobias Fink, J. Reymond (2007)
Virtual Exploration of the Chemical Universe up to 11 Atoms of C, N, O, F: Assembly of 26.4 Million Structures (110.9 Million Stereoisomers) and Analysis for New Ring Systems, Stereochemistry, Physicochemical Properties, Compound Classes, and Drug DiscoveryJournal of chemical information and modeling, 47 2
Adam Roberts, Jesse Engel, D. Eck (2017)
Hierarchical Variational Autoencoders for Music
P. Ertl, A. Schuffenhauer (2009)
Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributionsJournal of Cheminformatics, 1
M. Binois, D. Ginsbourger, O. Roustant (2017)
On the choice of the low-dimensional domain for global optimization via random embeddingsJournal of Global Optimization, 76
Matthew Groves, Edward Pyzer-Knapp (2018)
Efficient and Scalable Batch Bayesian Optimization Using K-MeansArXiv, abs/1806.01159
Jasper Snoek, H. Larochelle, Ryan Adams (2012)
Practical Bayesian Optimization of Machine Learning Algorithms
Bobak Shahriari, Kevin Swersky, Ziyun Wang, Ryan Adams, Nando Freitas (2016)
Taking the Human Out of the Loop: A Review of Bayesian OptimizationProceedings of the IEEE, 104
Rafael Gómez-Bombarelli, D. Duvenaud, José Hernández-Lobato, J. Aguilera-Iparraguirre, Timothy Hirzel, Ryan Adams, Alán Aspuru-Guzik (2016)
Automatic Chemical Design Using a Data-Driven Continuous Representation of MoleculesACS Central Science, 4
Kirthevasan Kandasamy, J. Schneider, B. Póczos (2015)
High Dimensional Bayesian Optimisation and Bandits via Additive Models
Zichao Yang, Zhiting Hu, R. Salakhutdinov, Taylor Berg-Kirkpatrick (2017)
Improved Variational Autoencoders for Text Modeling using Dilated ConvolutionsArXiv, abs/1702.08139
J. Mockus (1974)
THE BAYES METHODS FOR SEEKING THE EXTREMAL POINTKybernetes, 3
Donald Jones, Matthias Schonlau, W. Welch (2022)
Constrained Efficient Global Optimization of Expensive Black-box Functions
J. Bioucas-Dias, Mário Figueiredo (2007)
A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image RestorationIEEE Transactions on Image Processing, 16
Xianxu Hou, L. Shen, Ke Sun, G. Qiu (2016)
Deep Feature Consistent Variational Autoencoder2017 IEEE Winter Conference on Applications of Computer Vision (WACV)
Changyong Oh, E. Gavves, M. Welling (2018)
BOCK : Bayesian Optimization with Cylindrical KernelsArXiv, abs/1806.01619
Mojmír Mutný, Andreas Krause (2018)
Efficient High Dimensional Bayesian Optimization with Additivity and Quadrature Fourier Features
Stephan Eismann, Daniel Levy, Rui Shu, S. Bartzsch, Stefano Ermon (2018)
Bayesian optimization and attribute adjustment
Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, Zheng Zhang (2015)
MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed SystemsArXiv, abs/1512.01274
Ryan-Rhys Griffiths (2017)
Constrained Bayesian Optimization for Automatic Chemical Design
DR Jones, M Schonlau, WJ Welch (1998)
Efficient global optimization of expensive black?box functions, 13
J. Dhamala, S. Ghimire, J. Sapp, B. Horáček, Linwei Wang (2019)
Bayesian Optimization on Large Graphs via a Graph Convolutional Generative Model: Application in Cardiac Model PersonalizationArXiv, abs/1907.01406
O Chapelle, L Li (2011)
Advances in Neural Information Processing Systems, 24
Wen-bing Huang, Deli Zhao, F. Sun, Huaping Liu, Edward Chang (2015)
Scalable Gaussian Process Regression Using Deep Neural Networks
Carl Rasmussen (2003)
Gaussian Processes in Machine Learning
RR Griffiths, JM Hernández‐Lobato (2020)
Constrained Bayesian optimization for automatic chemical design using variational autoencoders, 11
Edward Snelson, Zoubin Ghahramani (2005)
Sparse Gaussian Processes using Pseudo-inputs
D. Weininger (1988)
SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rulesJ. Chem. Inf. Comput. Sci., 28
M. Binois, D. Ginsbourger, O. Roustant (2014)
A Warped Kernel Improving Robustness in Bayesian Optimization Via Random Embeddings
Diederik Kingma, Jimmy Ba (2014)
Adam: A Method for Stochastic OptimizationCoRR, abs/1412.6980
Matt Kusner, Brooks Paige, José Hernández-Lobato (2017)
Grammar Variational Autoencoder
H. Kushner (1964)
A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the Presence of NoiseJournal of Basic Engineering, 86
T. Espinasse, F. Gamboa, Jean-Michel Loubes (2014)
Parametric estimation for Gaussian fields indexed by graphsProbability Theory and Related Fields, 159
Austin Tripp, Erik Daxberger, José Hernández-Lobato (2020)
Sample-Efficient Optimization in the Latent Space of Deep Generative Models via Weighted RetrainingArXiv, abs/2006.09191
S. Greenhill, Santu Rana, Sunil Gupta, Pratibha Vellanki, S. Venkatesh (2020)
Bayesian Optimization for Adaptive Experimental Design: A ReviewIEEE Access, 8
Jia Wu, Xiuyun Chen, H. Zhang, Li-Dong Xiong, Hang Lei, S. Deng (2019)
Hyperparameter Optimization for Machine Learning Models Based on Bayesian OptimizationJournal of Electronic Science and Technology, 17
Xiaoyu Lu, Javier González, Zhenwen Dai, Neil Lawrence (2018)
Structured Variationally Auto-encoded Optimization
J. Mockus (1975)
On the Bayes Methods for Seeking the Extremal PointIFAC Proceedings Volumes, 8
(2005)
Minimum volume enclosing ellipsoid
Ziyun Wang, M. Zoghi, F. Hutter, David Matheson, Nando Freitas (2013)
UvA-DARE ( Digital Academic Repository ) Bayesian Optimization in High Dimensions via Random Embeddings
F. Tonolini, B. Jensen, R. Murray-Smith (2019)
Variational Sparse Coding
Rohit Tripathy, Ilias Bilionis, Marcial Gonzalez (2016)
Gaussian processes with built-in dimensionality reduction: Applications to high-dimensional uncertainty propagationJ. Comput. Phys., 321
R. Calandra, A. Seyfarth, Jan Peters, M. Deisenroth (2016)
Bayesian optimization for learning gaits under uncertaintyAnnals of Mathematics and Artificial Intelligence, 76
(2017)
dSprites: Disentanglement testing Sprites dataset. https://github.com/deepmind/dspritesdataset/; 2017
Ryan-Rhys Griffiths, José Hernández-Lobato (2017)
Constrained Bayesian Optimization for Automatic Chemical DesignarXiv: Machine Learning
(2010)
Gaussian process optimization in the bandit setting: no regret and experimental design
Ryan-Rhys Griffiths, José Lobato (2019)
Constrained Bayesian optimization for automatic chemical design using variational autoencoders† †Electronic supplementary information (ESI) available: Additional experimental results validating the algorithm configuration on the toy Branin-Hoo function. See DOI: 10.1039/c9sc04026aChemical Science, 11
Syusuke Sano, T. Kadowaki, Koji Tsuda, S. Kimura (2019)
Application of Bayesian Optimization for Pharmaceutical Product DevelopmentJournal of Pharmaceutical Innovation
Neil Lawrence (2003)
Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data
Han Xiao, Kashif Rasul, Roland Vollgraf (2017)
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning AlgorithmsArXiv, abs/1708.07747
W. Thompson (1933)
ON THE LIKELIHOOD THAT ONE UNKNOWN PROBABILITY EXCEEDS ANOTHER IN VIEW OF THE EVIDENCE OF TWO SAMPLESBiometrika, 25
Peter Young, S. Shellswell (1972)
Time series analysis, forecasting and controlIEEE Transactions on Automatic Control, 17
Andrei Paleyes, Mark Pullin, Maren Mahsereci, Cliff McCollum, Neil Lawrence, Javier González (2021)
Emulation of physical processes with EmukitArXiv, abs/2110.13293
Noémie Jaquier, L. Rozo, S. Calinon, Mathias Bürger (2019)
Bayesian Optimization Meets Riemannian Manifolds in Robot LearningArXiv, abs/1910.04998
G. Loaiza-Ganem, J. Cunningham (2019)
The continuous Bernoulli: fixing a pervasive error in variational autoencodersArXiv, abs/1907.06845
Applied AI Letters – Wiley
Published: Jun 1, 2021
Keywords: ; ;
You can share this free article with as many people as you like with the url below! We hope you enjoy this feature!
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.