Get 20M+ Full-Text Papers For Less Than $1.50/day. Subscribe now for You or Your Team.

Learn More →

Preparation of Carbohydrate Arrays by Using Diels–Alder Reactions with Inverse Electron Demand

Preparation of Carbohydrate Arrays by Using Diels–Alder Reactions with Inverse Electron Demand Carbohydrate microarrays are an emerging tool for the high‐throughput screening of carbohydrate–protein interactions that represent the basis of many biologically and medicinally relevant processes. The crucial step in the preparation of carbohydrate arrays is the attachment of carbohydrate probes to the surface. We examined the Diels–Alder reaction with inverse‐electron‐demand (DARinv) as an irreversible, chemoselective ligation reaction for that purpose. After having shown the efficiency of the DARinv in solution, we prepared a series of carbohydrate–dienophile conjugates that were printed onto tetrazine‐modified glass slides. Binding experiments with fluorescently labeled lectins proved successful and homogeneous immobilization was achieved by the DARinv. For immobilization of nonfunctionalized reducing oligosaccharides we developed a bifunctional chemoselective linker that enabled the attachment of a dienophile tag to the oligosaccharides through oxime ligation. The conjugates obtained were successfully immobilized on glass slides. The presented strategies for the immobilization of both synthetic carbohydrate derivatives and unprotected reducing oligosaccharides facilitate the preparation of high‐quality carbohydrate microarrays by means of the chemoselective DARinv. This concept can be readily adapted for the preparation of other biomolecule arrays. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Chemistry - A European Journal Wiley

Preparation of Carbohydrate Arrays by Using Diels–Alder Reactions with Inverse Electron Demand

Loading next page...
 
/lp/wiley/preparation-of-carbohydrate-arrays-by-using-diels-alder-reactions-with-fTry3UiJwn

References (64)

Publisher
Wiley
Copyright
Copyright © 2012 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0947-6539
eISSN
1521-3765
DOI
10.1002/chem.201200382
pmid
22511395
Publisher site
See Article on Publisher Site

Abstract

Carbohydrate microarrays are an emerging tool for the high‐throughput screening of carbohydrate–protein interactions that represent the basis of many biologically and medicinally relevant processes. The crucial step in the preparation of carbohydrate arrays is the attachment of carbohydrate probes to the surface. We examined the Diels–Alder reaction with inverse‐electron‐demand (DARinv) as an irreversible, chemoselective ligation reaction for that purpose. After having shown the efficiency of the DARinv in solution, we prepared a series of carbohydrate–dienophile conjugates that were printed onto tetrazine‐modified glass slides. Binding experiments with fluorescently labeled lectins proved successful and homogeneous immobilization was achieved by the DARinv. For immobilization of nonfunctionalized reducing oligosaccharides we developed a bifunctional chemoselective linker that enabled the attachment of a dienophile tag to the oligosaccharides through oxime ligation. The conjugates obtained were successfully immobilized on glass slides. The presented strategies for the immobilization of both synthetic carbohydrate derivatives and unprotected reducing oligosaccharides facilitate the preparation of high‐quality carbohydrate microarrays by means of the chemoselective DARinv. This concept can be readily adapted for the preparation of other biomolecule arrays.

Journal

Chemistry - A European JournalWiley

Published: Sep 21, 2013

Keywords: ; ; ; ;

There are no references for this article.