Access the full text.
Sign up today, get DeepDyve free for 14 days.
R. Lorenz (2002)
Planets, life and the production of entropyInternational Journal of Astrobiology, 1
B. Sohn, E. Smith (1994)
Energy transports by ocean and atmosphere based on an entropy extremum principle. Part II: Two-dimensional transportsMeteorology and Atmospheric Physics, 53
N. Rennó (1997)
Multiple equilibria in radiative-convective atmospheresTellus A, 49
H. Fortak (1979)
Entropy and Climate, 10
O. Reynolds (1995)
On the dynamical theory of incompressible viscous fluids and the determination of the criterionProceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 451
C. Essex (1984)
Radiation and the Irreversible Thermodynamics of ClimateJournal of the Atmospheric Sciences, 41
O. Pauluis (2000)
Ph.D. Dissertation: Entropy budget of an atmosphere in radiative-convective equilibrium
L. Howard (1972)
Bounds on Flow QuantitiesAnnual Review of Fluid Mechanics, 4
G. B.
Vorlesungen über die Theorie der WärmestrahlungNature, 92
H. Ozawa, S. Shimokawa, H. Sakuma (2001)
Thermodynamics of fluid turbulence: a unified approach to the maximum transport properties.Physical review. E, Statistical, nonlinear, and soft matter physics, 64 2 Pt 2
D. Kondepudi, I. Prigogine (1998)
Book Review: Modern Thermodynamics: From Heat Engines to Dissipative StructuresJournal of Statistical Physics, 94
Makoto Suzuki, Y. Sawada (1983)
Relative stabilities of metastable states of convecting charged-fluid systems by computer simulationPhysical Review A, 27
G. Paltridge (2001)
A physical basis for a maximum of thermodynamic dissipation of the climate systemQuarterly Journal of the Royal Meteorological Society, 127
G. Paltridge (1978)
The steady‐state format of global climateQuarterly Journal of the Royal Meteorological Society, 104
T. Pujol (2003)
Eddy Heat Diffusivity at Maximum Dissipation in a Radiative-convective One-dimensional Climate ModelJournal of the Meteorological Society of Japan, 81
J. Li, P. Chylek (1994)
Entropy in Climate Models. Part II: Horizontal Structure of Atmospheric Entropy ProductionJournal of the Atmospheric Sciences, 51
F. Busse (1969)
On Howard's upper bound for heat transport by turbulent convectionJournal of Fluid Mechanics, 37
R. Lorenz (2001)
Correction to “Titan, Mars and Earth: Entropy production by latitudinal heat transport”Geophysical Research Letters, 28
Y. Sawada (1981)
A Thermodynamic Variational Principle in Nonlinear Non-Equilibrium PhenomenaProgress of Theoretical Physics, 66
T. Pujol, J. Llebot (2000)
Extremal climatic states simulated by a 2-dimensional model Part II: Different climatic scenariosTellus A: Dynamic Meteorology and Oceanography, 52
D.K. OBrien (1997)
A yardstick for global entropy‐fluxQuarterly Journal of the Royal Meteorological Society, 123
E. Lorenz (1967)
The nature and theory of the general circulation of the atmosphere
J. Gérard, D. Delcourt, L. François (1990)
The maximum entropy production principle in climate models : application to the faint young sun paradoxQuarterly Journal of the Royal Meteorological Society, 116
(1994)
THERMODYNAMICS OF CLIMATE REVIEWS OF GEOPHYSICS Atmos. Sci
(1974)
C. R. Acad. Sci. Paris
Boltzmann (1898)
Vorlesungen über Gastheorie, part II
Daniel Lathrop, Jay Fineberg, H. Swinney (1992)
Transition to shear-driven turbulence in Couette-Taylor flow.Physical review. A, Atomic, molecular, and optical physics, 46 10
B. Sohn, E. Smith (1993)
Energy transports by ocean and atmosphere based on an entropy extremum principle. I - Zonal averaged transportsJournal of Climate, 6
K. Oswatitsch, E. Leiter (1968)
Ermittlung stationärer schallnaher Strömungen im Absteigeverfahren aus dem InstationärenZamm-zeitschrift Fur Angewandte Mathematik Und Mechanik, 48
L. Schulman (1977)
A Theoretical Study of the Efficiency of the General CirculationJournal of the Atmospheric Sciences, 34
A. Chattopadhyay, M. Zemansky, R. Dittman (1952)
Heat and thermodynamics
(1959)
Gesetzmä ! igkeiten der geradlinigen turbu - lenten Couetteströmung
(1901)
Les tourbillons cellulaires dans une nappe liquide transportant de la chaleur par convection en régime permanent
By Nicolisi (1999)
Entropy production and dynamical complexity in a low‐order atmospheric modelQuarterly Journal of the Royal Meteorological Society, 125
T. Pujol, J. Fort (2002)
States of maximum entropy production in a onedimensional vertical model with convective adjustmentTellus A: Dynamic Meteorology and Oceanography, 54
T. Pujol, J. Llebot (2000)
Extremal climatic states simulated by a 2-dimensional model Part I: Sensitivity of the model and present stateTellus A: Dynamic Meteorology and Oceanography, 52
W. Weiss (1996)
Original Article The balance of entropy on earthContinuum Mechanics and Thermodynamics
O. Pauluis, V. Balaji, I. Held (2000)
Frictional Dissipation in a Precipitating AtmosphereJournal of the Atmospheric Sciences, 57
J. Li, P. Chylek, B. LesinsG (1994)
気候モデルにおけるエントロピー 1 大気のエントロピー生産の垂直構造Journal of the Atmospheric Sciences, 51
F. Busse (1978)
The Optimum Theory of TurbulenceAdvances in Applied Mechanics, 18
W. Malkus (1956)
Outline of a theory of turbulent shear flowJournal of Fluid Mechanics, 1
J. Peixoto, A. Oort, M. Almeida, A. Tomé (1991)
Entropy budget of the atmosphereJournal of Geophysical Research, 96
W. Malkus (1954)
The heat transport and spectrum of thermal turbulenceProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 225
J. Vanyo, G. Paltridge (1981)
A model for energy dissipation at the mantle—core boundaryGeophysical Journal International, 66
E. Lorenz (1960)
GENERATION OF AVAILABLE POTENTIAL ENERGY AND THE INTENSITY OF THE GENERAL CIRCULATION
P. Glansdorff, I. Prigogine (1964)
On a general evolution criterion in macroscopic physicsPhysica D: Nonlinear Phenomena, 30
F. Herbert, J. Pelkowski (1990)
Radiation and entropy
Extremal climatic states simulated 41, 4 / REVIEWS
(ohmura@iac.umnw.ethz.ch) H. Ozawa, Institute for Global Change Research, Frontier Research System for Global Change, Showa-machi 3173-25
R. Lorenz, N. Rennó (2002)
Work output of planetary atmospheric engines: dissipation in clouds and rainGeophysical Research Letters, 29
A. Oort, J. Peixoto (1983)
Global Angular Momentum and Energy Balance Requirements from ObservationsAdvances in Geophysics, 25
R. Lorenz (2002)
Maximum Frictional Dissipation and the Information Entropy of Windspeeds, 27
S. Minobe, Yoshihito Kanamoto, N. Okada, H. Ozawa, M. Ikeda (2000)
Plume Structures in Deep Convection of Rotating Fluid, 19
J. Niemela, L. Skrbek, K. Sreenivasan, R. Donnelly (1999)
Turbulent convection at very high Rayleigh numbersNature, 404
W. Matthews, W. Kellogg, G. Robinson (1971)
Man's impact on the climate
L. Onsager (1931)
Reciprocal Relations in Irreversible Processes. II.Physical Review, 37
R. Lorenz (2001)
Of Course Ganymede and Callisto Have Oceans: Application of a Principle of Maximum Entropy Production to Icy Satellite Convection
G. Paltridge (1981)
Thermodynamic dissipation and the global climate systemQuarterly Journal of the Royal Meteorological Society, 107
R. Goody (2000)
Sources and sinks of climate entropyQuarterly Journal of the Royal Meteorological Society, 126
G. Lesins (1990)
On the relationship between radiative entropy and temperature distributionsJournal of the Atmospheric Sciences, 47
(1913)
Vorlesungen u ¨ber die Theorie der WärmestrahlungEnglish translation, The Theory of Heat Radiation
I. Prigogine, R. Balescu (1954)
Sur les propriétés différentielles de la production d'entropie, 41
H. Woo (2002)
Variational formulation of nonequilibrium thermodynamics for hydrodynamic pattern formations.Physical review. E, Statistical, nonlinear, and soft matter physics, 66 6 Pt 2
H. Ozawa, A. Ohmura (1997)
Thermodynamics of a Global-Mean State of the Atmosphere—A State of Maximum Entropy IncreaseJournal of Climate, 10
G. Shutts (1981)
Maximum entropy production states in quasi‐geostrophic dynamical modelsQuarterly Journal of the Royal Meteorological Society, 107
T. DelSole (2002)
Entropy as a basis for comparing and blending forecastsQuarterly Journal of the Royal Meteorological Society, 128
S. Shimokawa, H. Ozawa (2002)
On the thermodynamics of the oceanic general circulation: Irreversible transition to a state with higher rate of entropy productionQuarterly Journal of the Royal Meteorological Society, 128
E. Jaynes (1980)
The Minimum Entropy Production PrincipleAnnual Review of Physical Chemistry, 31
C. Lin (1982)
An extremal principle for a one‐dimensional climate modelGeophysical Research Letters, 9
E. Jaynes (1957)
Information Theory and Statistical MechanicsPhysical Review, 106
S. Mobbs (1982)
Extremal principles for global climate modelsQuarterly Journal of the Royal Meteorological Society, 108
T. Long (1903)
RÉFLEXIONS SUR LA PUISSANCE MOTRICE DU FEU, ET SUR LES MACHINES PROPRES A DÉVELOPPER CETTE PUISSANCE.Journal of the American Chemical Society, 25
M. Kivelson, K. Khurana, C. Russell, M. Volwerk, R. Walker, C. Zimmer (2000)
Measurements: A Stronger Case for a Subsurface Ocean at Europa
L. Beda (1994)
Thermal physicsJournal of thermal analysis, 41
J. Peixoto, A. Oort (1984)
Physics of climateReviews of Modern Physics, 56
A. Noda, T. Tokioka (1983)
Climates at minima of the entropy exchange rateJournal of the Meteorological Society of Japan, 61
F. Busse (1970)
Bounds for turbulent shear flowJournal of Fluid Mechanics, 41
J. Dutton (1973)
The global thermodynamics of atmospheric motionTellus A, 25
Shu-Kun Lin (1999)
Modern Thermodynamics: From Heat Engines to Dissipative StructuresEntropy, 1
B. Barkstrom, E. Harrison, R. Lee (1990)
Earth Radiation Budget ExperimentEos, Transactions American Geophysical Union, 71
R. Ulanowicz, Bruce Hannon (1987)
Life and the production of entropyProceedings of the Royal Society of London. Series B. Biological Sciences, 232
A. Bejan (1996)
Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processesJournal of Applied Physics, 79
L. Howard (1963)
Heat transport by turbulent convectionJournal of Fluid Mechanics, 17
S. Shimokawa, H. Ozawa (2001)
On the thermodynamics of the oceanic general circulation: entropy increase rate of an open dissipative system and its surroundingsTellus A: Dynamic Meteorology and Oceanography, 53
J. Lovelock (1972)
Gaia as seen through the atmosphereAtmospheric Environment, 6
(1990)
Phys. Atmos
(1898)
English translation, Lectures on Gas Theory, 490 pp
R. Dewar (2000)
Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary statesJournal of Physics A, 36
W. Weiss (1994)
The balance of entropy on earthContinuum Mechanics and Thermodynamics, 8
Chen Shi-gang, Wang You-qin (1983)
PHENOMENON OF WAVE-LENGTH INCREASE IN RAYLEIGH-BéNARD CONVECTION AND CRITERION OF MAXIMUM ENTROPY PRODUCTIONActa Physica Sinica, 32
(1962)
Non-equilibrium Thermodynamics, 510 pp
(1974)
Thermodynamique––Instabilité, transport et production d entropie
(1968)
Eine neuartige Methode zur theoretischen Behandlung turbulenter Transportvorgänge
G. Paltridge (1979)
Climate and thermodynamic systems of maximum dissipationNature, 279
(1959)
Gesetzmä!igkeiten der geradlinigen turbulenten Couetteströmung, Rep. 22, 45 pp., Max-Planck-Inst. für Strömungsforschung und Aerodyn
H. Ozawa (1997)
THERMODYNAMICS OF FROST HEAVING : A THERMODYNAMIC PROPOSITION FOR DYNAMIC PHENOMENAPhysical Review E, 56
T. Pujol, J. Llebot (1999)
Extremal principle of entropy production in the climate systemQuarterly Journal of the Royal Meteorological Society, 125
J. Wallach (2002)
Driven to extremes
Ludwig Bertalanffy (1949)
Ètude thermodynamique des phénomènes irréversiblesNature, 163
E. Lorenz (1963)
Deterministic nonperiodic flowJournal of the Atmospheric Sciences, 20
G. Paltridge (1975)
Global dynamics and climate - a system of minimum entropy exchange
W. Muschik (1995)
Thermodynamics of Irreversible Processes. Applications to Diffusion and RheologyZeitschrift für Physikalische Chemie, 192
R. Goody, W. Abdou (1996)
Reversible and irreversible sources of radiation entropyQuarterly Journal of the Royal Meteorological Society, 122
R. Lorenz (2003)
Full Steam Ahead--ProbablyScience, 299
(1978)
Stability and extremal properties of climate models, Izv
R. Clausius
Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen WärmetheorieAnnalen der Physik, 201
L. Rayleigh (1916)
LIX. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under sidePhilosophical Magazine Series 1, 32
G. Stephens, D. O'Brien (1993)
Entropy and climate. I - ERBE observations of the entropy production of the earthQuarterly Journal of the Royal Meteorological Society, 119
R. Wildt (1956)
Radiative Transfer and Thermodynamics.The Astrophysical Journal, 123
V. Bădescu (1989)
On the thermodynamics of the conversion of diluted radiationJournal of Physics D, 23
S. Chandrasekhar (1961)
Hydrodynamic and Hydromagnetic Stability
T. Pujol, J. Llebot (1999)
Second differential of the entropy as a criterion for the stability in low‐dimensional climate modelsQuarterly Journal of the Royal Meteorological Society, 125
E. Lorenz (1955)
Available Potential Energy and the Maintenance of the General CirculationTellus A, 7
Chen (1983)
The phenomenon of wave-length increase in Rayleigh-Bénard convection and criterion of maximum entropy productionChin. Phys., 3
G. Nicolis, C. Nicolis (1980)
On the entropy balance of the earth‐atmosphere systemQuarterly Journal of the Royal Meteorological Society, 106
R. Lorenz, J. Lunine, P. Withers, C. Mckay (2001)
Titan, Mars and Earth : Entropy production by latitudinal heat transportGeophysical Research Letters, 28
P. Wyant, A. Mongroo, S. Hameed (1988)
Determination of the Heat-Transport Coefficient in Energy-Balance Climate Models by Extremization of Entropy ProductionJournal of the Atmospheric Sciences, 45
D. O'Brien, G. Stephens (1995)
Entropy and climate. II: Simple modelsQuarterly Journal of the Royal Meteorological Society, 121
I. Aoki (1983)
Entropy Productions on the Earth and Other Planets of the Solar SystemJournal of the Physical Society of Japan, 52
E. Lorenz (1977)
Available energy and the maintenance of a moist circulationTellus A, 30
P. Landsberg, G. Tonge (1979)
Thermodynamics of the conversion of diluted radiationJournal of Physics A, 12
The long‐term mean properties of the global climate system and those of turbulent fluid systems are reviewed from a thermodynamic viewpoint. Two general expressions are derived for a rate of entropy production due to thermal and viscous dissipation (turbulent dissipation) in a fluid system. It is shown with these expressions that maximum entropy production in the Earth's climate system suggested by Paltridge, as well as maximum transport properties of heat or momentum in a turbulent system suggested by Malkus and Busse, correspond to a state in which the rate of entropy production due to the turbulent dissipation is at a maximum. Entropy production due to absorption of solar radiation in the climate system is found to be irrelevant to the maximized properties associated with turbulence. The hypothesis of maximum entropy production also seems to be applicable to the planetary atmospheres of Mars and Titan and perhaps to mantle convection. Lorenz's conjecture on maximum generation of available potential energy is shown to be akin to this hypothesis with a few minor approximations. A possible mechanism by which turbulent fluid systems adjust themselves to the states of maximum entropy production is presented as a self‐feedback mechanism for the generation of available potential energy. These results tend to support the hypothesis of maximum entropy production that underlies a wide variety of nonlinear fluid systems, including our planet as well as other planets and stars.
Reviews of Geophysics – Wiley
Published: Dec 1, 2003
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.