Access the full text.
Sign up today, get DeepDyve free for 14 days.
(2015)
En face OCT imaging in Retinal disorders
(2019)
Hu ZJ. Automated detection and classification of early AMD biomarkers using deep learningSci Rep, 9
Abhijit Roy, Sailesh Conjeti, S. Karri, D. Sheet, A. Katouzian, C. Wachinger, Nassir Navab (2017)
ReLayNet: Retinal Layer and Fluid Segmentation of Macular Optical Coherence Tomography using Fully Convolutional NetworkBiomedical optics express, 8 8
J Ngiam, Z Chen, D Chia, PW Koh, QV Le, AY Ng (2010)
Advances in Neural Information Processing Systems
O. Ronneberger, P. Fischer, T. Brox (2015)
U-Net: Convolutional Networks for Biomedical Image SegmentationArXiv, abs/1505.04597
Jianqin Lei, S. Balasubramanian, N. Abdelfattah, M. Nittala, S. Sadda (2017)
Proposal of a simple optical coherence tomography-based scoring system for progression of age-related macular degenerationGraefe's Archive for Clinical and Experimental Ophthalmology, 255
Sajib Saha, M. Nassisi, Mo Wang, Sophiana Lindenberg, Y. Kanagasingam, S. Sadda, Z. Hu (2019)
Automated detection and classification of early AMD biomarkers using deep learningScientific Reports, 9
Qiang Chen, L. Sisternes, T. Leng, Luoluo Zheng, Lauren Kutzscher, D. Rubin (2013)
Semi-automatic geographic atrophy segmentation for SD-OCT images.Biomedical optics express, 4 12
Matthäus Pilch, K. Stieger, Y. Wenner, M. Preising, C. Friedburg, Erdmuthe Bexten, B. Lorenz (2013)
Automated segmentation of pathological cavities in optical coherence tomography scans.Investigative ophthalmology & visual science, 54 6
Ziyuan Wang, S. Sadda, Z. Hu (2019)
Deep learning for automated screening and semantic segmentation of age-related and juvenile atrophic macular degeneration, 10950
R. Finger, Zhichao Wu, C. Luu, F. Kearney, L. Ayton, L. Lucci, W. Hubbard, Jill Hageman, G. Hageman, R. Guymer (2014)
Reticular pseudodrusen: a risk factor for geographic atrophy in fellow eyes of individuals with unilateral choroidal neovascularization.Ophthalmology, 121 6
Y. Ouyang, F. Heussen, A. Hariri, P. Keane, S. Sadda (2013)
Optical coherence tomography-based observation of the natural history of drusenoid lesion in eyes with dry age-related macular degeneration.Ophthalmology, 120 12
Yalin Zheng, J. Sahni, C. Campa, A. Stangos, Ankur Raj, S. Harding (2013)
Computerized assessment of intraretinal and subretinal fluid regions in spectral-domain optical coherence tomography images of the retina.American journal of ophthalmology, 155 2
(2020)
Layer segmenation using graph-based algorithm incorporating deep-learning-derived informationSci Rep, 10
N. Bressler, S. Bressler, N. Congdon, F. Ferris, D. Friedman, R. Klein, A. Lindblad, R. Milton, J. Seddon (2003)
Potential public health impact of Age-Related Eye Disease Study results: AREDS report no. 11.Archives of ophthalmology, 121 11
N. Jain, Sina Farsiu, Aziz Khanifar, S. Bearelly, R. Smith, J. Izatt, C. Toth (2010)
Quantitative comparison of drusen segmented on SD-OCT versus drusen delineated on color fundus photographs.Investigative ophthalmology & visual science, 51 10
M. Nassisi, Wenying Fan, Yue Shi, Jianqin Lei, E. Borrelli, M. Ip, S. Sadda (2018)
Quantity of Intraretinal Hyperreflective Foci in Patients With Intermediate Age-Related Macular Degeneration Correlates With 1-Year Progression.Investigative ophthalmology & visual science, 59 8
L. Sisternes, N. Simon, R. Tibshirani, T. Leng, D. Rubin (2014)
Quantitative SD-OCT imaging biomarkers as indicators of age-related macular degeneration progression.Investigative ophthalmology & visual science, 55 11
Sajib Saha, D. Xiao, Shaun Frost, Y. Kanagasingam (2016)
A Two-Step Approach for Longitudinal Registration of Retinal ImagesJournal of Medical Systems, 40
Sajib Saha, D. Xiao, A. Bhuiyan, T. Wong, Y. Kanagasingam (2019)
Color fundus image registration techniques and applications for automated analysis of diabetic retinopathy progression: A reviewBiomed. Signal Process. Control., 47
A. Kassoff, J. Kassoff, J. Buehler, M. Eglow, F. Kaufman, M. Mehu, S. Kieval, M. Mairs, B. Graig, A. Quattrocchi, David Jones, J. Locatelli, A. Ruby, A. Capon, B. Garretson, T. Hassan, M. Trese, George Williams, V. Regan, P. Manatrey, P. Streasick, L. Szydlowski, F. McIver, C. Bridges, C. Stanley, K. Cumming, B. Lewis, M. Zajechowski, R. Margherio, M. Cox, J. Werner, R. Falk, P. Siedlak, C. Neubert, M. Klein, J. Stout, A. O'Malley, A. Lauer, J. Robertson, David Wilson, C. Beardsley, H. Anderson, P. Wallace, G. Smith, S. Howard, R. Dreyer, C. Ma, R. Chenoweth, J. Zilis, M. Johnson, P. Rice, H. Daniel, H. Crider, S. Parker, K. Sherman, Daniel Martin, T. Aaberg, P. Sternberg, L. Curtis, B. Ju, J. Gilman, B. Myles, S. Strittman, C. Gentry, H. Yi, A. Capone, M. Lambert, T. Meredith, T. Aaberg, D. Saperstein, Jennifer Lim, B. Stribling, D. Armiger, R. Swords, D. Orth, T. Flood, J. Civantos, S. deBustros, K. Packo, P. Merrill, J. Cohen, C. Figliulo, C. Morrison, D. Bryant, D. Doherty, M. McVicker, T. Drefcinski, J. Seddon, M. Pinnolis, N. Davis, I. Burton, T. Taitsel, D. Walsh, J. Dubois-Moran, C. Callahan, C. Evans, K. Snow, D. Jones-Devonish, V. Crouse (2001)
A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8.Archives of ophthalmology, 119 10
D. Erhan, Yoshua Bengio, Aaron Courville, Pascal Vincent (2009)
Visualizing Higher-Layer Features of a Deep Network
Ross Girshick, Jeff Donahue, Trevor Darrell, J. Malik (2013)
Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation2014 IEEE Conference on Computer Vision and Pattern Recognition
Z Wang, SR Sadda, Z Hu (2019)
Medical Imaging 2019: Computer‐Aided Diagnosis, 10950
Zubin Mishra, Anushika Ganegoda, Jane Selicha, Ziyuan Wang, S. Sadda, Z. Hu (2020)
Automated Retinal Layer Segmentation Using Graph-based Algorithm Incorporating Deep-learning-derived InformationScientific Reports, 10
MD Zeiler, R Fergus (2014)
European Conference on Computer Vision
Sultan Mohaimin, Sajib Saha, Alve Khan, A. Arif, Y. Kanagasingam (2018)
Automated method for the detection and segmentation of drusen in colour fundus image for the diagnosis of age-related macular degenerationIET Image Process., 12
Quoc Le, Jiquan Ngiam, Zhenghao Chen, D. Chia, Pang Koh, A. Ng (2010)
Tiled convolutional neural networks
Z. Hu, Ziyuan Wang, S. Sadda (2019)
Automated choroidal segmentation in spectral optical coherence tomography images with geographic atrophy using multimodal complementary informationJournal of Medical Imaging, 6
Z. Hu, G. Medioni, Matthias Hernandez, A. Hariri, Xiaodong Wu, S. Sadda (2013)
Segmentation of the geographic atrophy in spectral-domain optical coherence tomography and fundus autofluorescence images.Investigative ophthalmology & visual science, 54 13
Matthew Zeiler, R. Fergus (2013)
Visualizing and Understanding Convolutional NetworksArXiv, abs/1311.2901
P. Kertes (2004)
POTENTIAL PUBLIC HEALTH IMPACT OF AGE-RELATED EYE DISEASE STUDY RESULTS: AREDS REPORT NO. 11Evidence-based Eye Care, 5
Sajib Saha, Di Xiao, Basura Fernando, M. Tay-Kearney, D. An, Y. Kanagasingam (2017)
Deep Learning Based Decision Support System for Automated Diagnosis of Age-related Macular Degeneration (AMD)Investigative Ophthalmology & Visual Science, 58
Z. Hu, Ziyuan Wang, S. Sadda (2018)
Automated segmentation of geographic atrophy using deep convolutional neural networks, 10575
M. VanNewkirk, M. Nanjan, Jie-Jin Wang, P. Mitchell, H. Taylor, Catherine McCarty (2000)
The prevalence of age-related maculopathy: the visual impairment project.Ophthalmology, 107 8
K. Simonyan, A. Vedaldi, Andrew Zisserman (2013)
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency MapsCoRR, abs/1312.6034
N. Abdelfattah, Hongyang Zhang, D. Boyer, P. Rosenfeld, W. Feuer, Giovanni Gregori, S. Sadda (2016)
Drusen Volume as a Predictor of Disease Progression in Patients With Late Age-Related Macular Degeneration in the Fellow Eye.Investigative ophthalmology & visual science, 57 4
F. Penha, P. Rosenfeld, Giovanni Gregori, M. Falcão, Zohar Yehoshua, Fenghua Wang, W. Feuer (2012)
Quantitative imaging of retinal pigment epithelial detachments using spectral-domain optical coherence tomography.American journal of ophthalmology, 153 3
Applied AI Letters – Wiley
Published: Oct 1, 2020
Keywords: ; ; ; ; ; ; ; ;
You can share this free article with as many people as you like with the url below! We hope you enjoy this feature!
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.