Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Activation of Angiopoietin-Tie2 Signaling Protects the Kidney from Ischemic Injury by Modulation of Endothelial-Specific Pathways

Activation of Angiopoietin-Tie2 Signaling Protects the Kidney from Ischemic Injury by Modulation... Significance StatementIschemia-reperfusion AKI (IR-AKI) is common and causes significant morbidity. Effective treatments are lacking. However, preclinical studies suggest that inhibition of angiopoietin-Tie2 vascular signaling promotes injury, whereas activation of Tie2 is protective. We show that kidney ischemia leads to increased levels of the endothelial-specific phosphatase vascular endothelial protein tyrosine phosphatase (VE-PTP; PTPRB), which inactivates Tie2. Activation of Tie2 through VE-PTP deletion, or delivery of a novel angiopoietin mimetic (Hepta-ANG1), abrogated IR-AKI in mice. Single-cell RNAseq analysis showed Tie2 activation promotes increased Entpd1 expression, downregulation of FOXO1 target genes in the kidney vasculature, and emergence of a new subpopulation of glomerular endothelial cells. Our data provide a molecular basis and identify a candidate therapeutic to improve endothelial integrity and kidney function after IR-AKI.BackgroundIschemia-reperfusion AKI (IR-AKI) is estimated to affect 2%–7% of all hospitalized patients. The significant morbidity and mortality associated with AKI indicates urgent need for effective treatments. Previous studies have shown activation of the vascular angiopoietin-Tie2 tyrosine kinase signaling pathway abrogates ischemia-reperfusion injury (IRI). We extended previous studies to (1) determine the molecular mechanism(s) underlying kidney injury and protection related to decreased or increased activation of Tie2, respectively, and (2) to test the hypothesis that deletion of the Tie2 inhibitory phosphatase vascular endothelial protein tyrosine phosphatase (VE-PTP) or injection of a new angiopoietin mimetic protects the kidney from IRI by common molecular mechanism(s).MethodsBilateral IR-AKI was performed in VE-PTP wild-type or knockout mice and in C57BL/6J mice treated with Hepta-ANG1 or vehicle. Histologic, immunostaining, and single-cell RNA sequencing analyses were performed.ResultsThe phosphatase VE-PTP, which negatively regulates the angiopoietin-Tie2 pathway, was upregulated in kidney endothelial cells after IRI, and genetic deletion of VE-PTP in mice protected the kidney from IR-AKI. Injection of Hepta-ANG1 potently activated Tie2 and protected the mouse kidney from IRI. Single-cell RNAseq analysis of kidneys from Hepta-ANG1–treated and vehicle-treated mice identified endothelial-specific gene signatures and emergence of a new glomerular endothelial subpopulation associated with improved kidney function. Overlap was found between endothelial-specific genes upregulated by Hepta-ANG1 treatment and those downregulated in HUVECs with constitutive FOXO1 activation, including Entpd1/ENTPD1 that modulates purinergic receptor signaling.ConclusionsOur data support a key role of the endothelium in the development of IR-AKI, introduce Hepta-ANG1 as a putative new therapeutic biologic, and report a model to explain how IRI reduces Tie2 signaling and how Tie2 activation protects the kidney.PodcastThis article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/JASN/2023_05_23_JASN0000000000000098.mp3 http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the American Society of Nephrology Wolters Kluwer Health

Activation of Angiopoietin-Tie2 Signaling Protects the Kidney from Ischemic Injury by Modulation of Endothelial-Specific Pathways

Loading next page...
 
/lp/wolters-kluwer-health/activation-of-angiopoietin-tie2-signaling-protects-the-kidney-from-6nWY75O6tM

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Wolters Kluwer Health
Copyright
Copyright © 2023 by the American Society of Nephrology
ISSN
1046-6673
eISSN
1533-3450
DOI
10.1681/asn.0000000000000098
Publisher site
See Article on Publisher Site

Abstract

Significance StatementIschemia-reperfusion AKI (IR-AKI) is common and causes significant morbidity. Effective treatments are lacking. However, preclinical studies suggest that inhibition of angiopoietin-Tie2 vascular signaling promotes injury, whereas activation of Tie2 is protective. We show that kidney ischemia leads to increased levels of the endothelial-specific phosphatase vascular endothelial protein tyrosine phosphatase (VE-PTP; PTPRB), which inactivates Tie2. Activation of Tie2 through VE-PTP deletion, or delivery of a novel angiopoietin mimetic (Hepta-ANG1), abrogated IR-AKI in mice. Single-cell RNAseq analysis showed Tie2 activation promotes increased Entpd1 expression, downregulation of FOXO1 target genes in the kidney vasculature, and emergence of a new subpopulation of glomerular endothelial cells. Our data provide a molecular basis and identify a candidate therapeutic to improve endothelial integrity and kidney function after IR-AKI.BackgroundIschemia-reperfusion AKI (IR-AKI) is estimated to affect 2%–7% of all hospitalized patients. The significant morbidity and mortality associated with AKI indicates urgent need for effective treatments. Previous studies have shown activation of the vascular angiopoietin-Tie2 tyrosine kinase signaling pathway abrogates ischemia-reperfusion injury (IRI). We extended previous studies to (1) determine the molecular mechanism(s) underlying kidney injury and protection related to decreased or increased activation of Tie2, respectively, and (2) to test the hypothesis that deletion of the Tie2 inhibitory phosphatase vascular endothelial protein tyrosine phosphatase (VE-PTP) or injection of a new angiopoietin mimetic protects the kidney from IRI by common molecular mechanism(s).MethodsBilateral IR-AKI was performed in VE-PTP wild-type or knockout mice and in C57BL/6J mice treated with Hepta-ANG1 or vehicle. Histologic, immunostaining, and single-cell RNA sequencing analyses were performed.ResultsThe phosphatase VE-PTP, which negatively regulates the angiopoietin-Tie2 pathway, was upregulated in kidney endothelial cells after IRI, and genetic deletion of VE-PTP in mice protected the kidney from IR-AKI. Injection of Hepta-ANG1 potently activated Tie2 and protected the mouse kidney from IRI. Single-cell RNAseq analysis of kidneys from Hepta-ANG1–treated and vehicle-treated mice identified endothelial-specific gene signatures and emergence of a new glomerular endothelial subpopulation associated with improved kidney function. Overlap was found between endothelial-specific genes upregulated by Hepta-ANG1 treatment and those downregulated in HUVECs with constitutive FOXO1 activation, including Entpd1/ENTPD1 that modulates purinergic receptor signaling.ConclusionsOur data support a key role of the endothelium in the development of IR-AKI, introduce Hepta-ANG1 as a putative new therapeutic biologic, and report a model to explain how IRI reduces Tie2 signaling and how Tie2 activation protects the kidney.PodcastThis article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/JASN/2023_05_23_JASN0000000000000098.mp3

Journal

Journal of the American Society of NephrologyWolters Kluwer Health

Published: Jun 14, 2023

References